
FSprof: An In-Kernel File System Operations Profiler

Nikolai Joukov, Charles P. Wright, and Erez Zadok
Computer Science department

Stony Brook University
Stony Brook, NY 11794-4400

Technical Report FSL-04-06

kolya,cwright,ezk@cs.sunysb.edu

ABSTRACT
Developing efficient file systems is difficult. Often, profiling tools
are useful for analyzing system bottlenecks and correcting them.
Whereas there are several techniques to profile system call activ-
ity or disk-block activity, there are no good tools to profile file
systems—which logically reside below system calls and above disk
drivers. We developed a tool called FSprof that instruments existing
file systems’ source code to profile their activity. This instrumen-
tation incurs negligible runtime overhead. For file systems that do
not have source code available, we also developed a thin file-system
wrapper. When a profiled file system runs, it records operation
frequencies and precise latencies and sorts them into configurable
exponential buckets. We wrote additional tools to help verify, ana-
lyze, and display the profiling data.

We ran FSprof on several popular Linux file systems: Ext2, Ext3,
Reiserfs, and a stackable (layered) file system called Wrapfs. Our
analysis revealed interesting discoveries about file systems and ben-
chmarks. We analyzed bi-modal and even tri-modal distributions
we found in certain operation latencies, which result from com-
plex interactions between file system caches and disks. We illus-
trate how simple file system designs can lead to serious lock con-
tention and slow down the entire operating system. We show how
seemingly similar file system benchmarks can unexpectedly behave
rather differently. We also observed that a tiny percentage of certain
calls can have a disproportionate overall effect.

FSprof is the first tool specifically designed for analyzing file
system behavior, using high precision and a fine level of detail.
FSprof helps developers collect and organize information, then di-
agnose and optimize file system performance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques and Per-
formance Attributes; D.4.3 [Operating Systems]: File Systems
Management; D.4.8 [Operating Systems]: Performance—Mea-
surements, Monitors, and Operational Analysis

General Terms
Design, Measurement, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
File Systems, Profiling, Instrumentation

1. INTRODUCTION
File systems control access to data; therefore, their performance

is critical to many applications. Developing file systems is a dif-
ficult task. Profiling tools are generally helpful in debugging and
optimizing complex software systems. Alas, there are no profiling
tools available specifically for file systems. Today, file system de-
velopers must use one of several unsatisfactory techniques to pro-
file file systems:

• System call monitoring can show which file-system–related
system calls applications invoke. The system call API is sim-
ilar to file system APIs, but it is unsuitable for file system
monitoring for two reasons. First, system calls do not map
perfectly to file system events. For example, every system
call that accesses a file name (e.g., open or mkdir) results
in a file system lookup operation that translates pathnames
to OS objects, typically followed by a permission-checking
operation. In other words, file system designers develop to
a different API than the system call API. Second, memory-
mapped operations do not show up as system calls, but result
in file system read page or write page operations, in-
voked from a page fault handler. This means that system call
tracing for the purpose of file system profiling ignores im-
portant and commonly-used memory-mapped events.

• Disk-device or block-level profiling shows raw block read
and write requests going to a disk device [30]. However, at
this low level, vital file system information is lost. At the
device level, all we see are block reads and writes, and their
offsets within the disk. There is no knowledge about whether
the block is data or meta-data; what the block’s offset within
a file is; what other blocks the block relates to; and more.

• For network file systems such as NFS, protocol-level or packet-
level profiling is often done [9]. Such profiling is limited
by the protocol and often does not accurately reflect the file
system’s operations. One reason is that network file system
clients cache information and change sequences of opera-
tions; because of this they appear different inside the net-
work file system client’s OS vs. the network. Similarly, net-
work file system servers perform caching and processing be-
fore executing file system operations, so the network profile
is representative of neither the client’s nor the server’s file-
system activity.

1

• Whole-kernel profilers provide information about the CPU
execution time of every OS function, including file system
functions. These profilers use a combination of sampling and
hooks at function entry/exit points to produce an approxima-
tion of how much CPU and I/O each function used, and a cor-
responding call graph. Unfortunately, these profilers do not
have file-system–specific information so they must record in-
formation on every kernel function, leading to higher over-
heads. Finally, the profiles do not provide the distribution of
time used by a function, but rather the average time used.

In other words, existing profiling techniques are unsuitable for
precise file system profiling. This is not surprising, since none of
these techniques operate at the exact level of the file system: system
calls are above, disk-block and networks are below file systems,
and whole-kernel profiling is too general and therefore inefficient.

File systems are complex pieces of software that may interact
with several other subsystems: the VM system and page caches,
disk device drivers, and networks. As such, file systems include
a mix of CPU-intensive and I/O-intensive operations with widely
varying latencies and frequencies. These interactions are non-trivial
and make it particularly difficult to analyze file system behavior.

The lack of proper file system profiling tools has forced file sys-
tem developers to resort to ad-hoc or indirect techniques to analyze
file system behavior. Our experience over the last decade is no
different. For example, we often wrote small programs to micro-
benchmark a specific file system operation, typically by calling sys-
tem calls; as mentioned above, system calls embody multiple file
system operations and thus cannot separate the behavior of each file
system operation. At other times we used a large compile to bench-
mark a file system, Postmark [14] to stress meta-data operations, or
fsx [18] to stress the file system’s interaction with the VM.

In this paper we introduce FSprof, the first profiling tool that was
specifically designed for analyzing file system behavior. FSprof
can provide accurate counts of each file system operation at the file
system level, and very precise timing for file system operations.
FSprof operates in two modes. First, if source code is available,
FSprof instruments the file system source with built-in profiling
and timing. This instrumentation was carefully designed to ensure
that the overhead introduced was negligible: less than 100 CPU
cycles per file system operation and below 1% of elapsed time for
I/O-intensive workloads. Second, if source code is not available,
we have developed a thin file-system wrapper with FSprof built in,
which can be mounted on top of any other file system, to intercept
and measure the mounted-on file system’s operations.

Using FSprof we analyzed several common file system bench-
marks: a few compile benchmarks, Postmark, and a recursive grep
microbenchmark. Our analysis revealed several unexpected results.
First, we scientifically verified that file systems contain complex
interactions; this was seen in bi-modal and tri-modal operation la-
tency distributions we found, investigated, and explained. Second,
we found that for some common combinations of file systems and
benchmarks, a small fraction of operations accounted for the vast
majority of time the file system spent executing a certain type of
operation; this implied that small changes in benchmarks can re-
sult in non-negligible performance differences. We show that file
systems’ performance is generally sensitive to a disproportionally
small number of operations. Third, we found that seemingly simi-
lar (large-compile) benchmarks can produce rather different results
due to differences in file system operation mixes. Finally, we show
that file systems must be designed very carefully, or face significant
performance bottlenecks (i.e., lock contention), or worse—hurt the
performance of the entire operating system.

FSprof is a unique tool that for the first time offers kernel de-

velopers a direct window into the inner workings of file systems.
We believe that FSprof is a promising tool and technique, because
we were able to discover and explain several counter-intuitive file-
system behaviors in just a few months with FSprof. With very low
overheads and precise measurements, we hope that FSprof will be-
come a common tool used by file system developers in the future.

The rest of this paper is organized as follows. Section 2 describes
the guiding principles of our design and Section 3 describes the im-
plementation of our system. We evaluate our system in Section 4.
In Section 5 we present several usage scenarios and analyze profiles
of several real-world file systems and workloads. We describe re-
lated work in Section 6. We conclude and discuss future directions
in Section 7.

2. DESIGN
When designing FSprof, we made three main decisions: latency

aggregation, using exponential buckets to collect results, and only
profiling VFS operations.

Latency aggregation We capture the latency of file system op-
erations. It can serve as an ideal metric for file system profiling
because the operation latency contains information about the oper-
ation’s CPU execution time as well as the associated I/O request
delays.

Capturing the function execution latency is simple, and requires
minimal code instrumentation. Early code-profiling tools rejected
latency as a viable performance metric, because in multitasking en-
vironments the program can be rescheduled at any arbitrary point
in time, perturbing the results. Fortunately, execution in the Unix
kernel is different from execution in user space. The kernel can be
preempted only at certain points, when the file system operation
specifically waits on I/O requests, waits to get a lock, or yields the
CPU. Most functions have only a few such points, and their pres-
ence simply adds to the possible delay (as observed by both the
user and FSprof). Some kernels can be compiled with kernel code
execution preemption enabled. However, even in that case, profiles
generated by single processes are not affected by the preemption as
we show in Section 5.1.2. Analyzing multi-process workloads on a
preemptible kernel is beyond the scope of this paper.

Exponential buckets The captured latencies are sorted and stored
in exponential buckets. Different code execution paths form differ-
ent peaks on the histogram; therefore, there is no need to preserve
information about every individual execution of an operation.

Collecting statistical information in buckets is a common pro-
gram profiling technique, which allows measuring the most in-
teresting information without burdensome storage and processing
requirements. Usually, information is stored in linear histograms
where information is distributed in buckets that represent several
CPU instructions or code lines. In contrast, we store the number of
operations with a given latency in the bucket corresponding to that
latency. Therefore, our histogram is not directly tied to the source
code. Nevertheless, the distribution of latencies forms well-defined
peaks that can be easily correlated with the file system code. We
used exponentially distributed buckets because the difference be-
tween the latencies of the different execution paths can be several
orders of magnitude. For example, to return cached information
might take tens of instructions (i.e., only a few nanoseconds), but
to access the disk or network takes tens of milliseconds.

VFS operations profiling We capture latencies of only Virtual
File System (VFS) operations. This allows us to add minimal mem-
ory and time overheads, while capturing all file-system–related ac-
tivities. The VFS interface defines a limited set of operations on

2

 0
 100
 200
 300
 400
 500
 600
 700
 800

N
um

be
r

of
 o

pe
ra

tio
ns

Bucket (2 x-1
 <= N < 2 x

 CPU Cycles) Elapsed tim
e (x2

34 CPU Cycles)

z

y

x

 5

 10

 15

 20

 25

 30
 0

 5
 10

 15
 20

 25
 30

 35
 40

 0

 100

 200

 300

 400

 500

 600

 700

 800

Figure 1: Profile of the Ext2 lookup operation under the ker-
nel build workload. (Number of operations in every bucket.)

 0
 1e+08
 2e+08
 3e+08
 4e+08
 5e+08
 6e+08
 7e+08

T
ot

al
 d

el
ay

 (
C

P
U

 c
yc

le
s)

Bucket (2 x-1
 <= N < 2 x

 CPU Cycles) Elapsed tim
e (x2

34 CPU Cycles)

z

y

x

 5

 10

 15

 20

 25

 30
 0

 5
 10

 15
 20

 25
 30

 35
 40

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

Figure 2: Profile of the Ext2 lookup operation under the ker-
nel build workload. (Total delay of each bucket.)

file system primitives, which are the only interface between the up-
per OS layers and a file system. Therefore, it is sufficient to profile
VFS operations to collect information about all of a file system’s
activity. There are 74 VFS operations on five objects, but most file
systems only define a subset of them (e.g., Ext2 defines functions
for only 28 VFS operations).

Not all measured latencies directly contribute to the total system
and elapsed time (including I/O) as seen by user space, because
some VFS operations call other VFS operations. For example, after
a directory entry is found, lookup calls read inode to locate
and read the on-disk inode structure into memory. Therefore, one
needs to understand the file system call graph structure to correlate
the total system and I/O times with the captured profile. Fortu-
nately, in many cases the call graph structure can be inferred from
the profile. Operations that call other VFS operations often have
latency distribution peaks that are a superposition of the peaks of
the called operations. More details about the VFS operation call
graphs and modes of operation can be obtained using incremental
profiling techniques described in Section 5.1.1.

To capture the dependence of file system operations on a certain
part of a run, we save the latency distribution at pre-defined inter-
vals. Therefore, the profile is a 4-dimensional view of file system
operations consisting of:

• VFS operation
• Latency
• Number of operations with this latency
• Elapsed time interval

Figure 1 shows an example 3D view of the lookup operation on
Ext2. The z axis contains the number of operations that fall within

struct file_operations ext2_dir_operations = {
read: generic_read_dir,
readdir: ext2_readdir,
ioctl: ext2_ioctl,
fsync: ext2_sync_file,

};

Figure 3: Ext2 file system directory operations. The kernel ex-
ports the generic read dir function for use by multiple file
systems.

a given bucket (the x axis) within a given elapsed time interval (the
y axis). Figure 2 shows the estimated delay for each bucket on the z
axis, which is the number of operations in the xth bucket multiplied
by 1.5 · 2x. A small number of invocations in buckets 22–25 are
responsible for a large portion of the operation’s overall delay.

Our profiles contain more information than those generated by
any other file-system–profiling technique available today, and pro-
vide information about both system and I/O times associated with
particular VFS operations. The profile can be used to draw general
conclusions from particular operation patterns, because informa-
tion about all the delays of a given operation is available. Often
benchmarks focus on a specific set of file-system operations, so the
overhead related to less-frequently–used operations is not apparent.
Our profiles can be used to draw conclusions about and gain insight
into how an operation mix would perform on a given file system,
even if such a workload was never executed on it. Currently, many
file system developers optimize performance for some particular
workload. In the future, the insight gained by using our profiles
could help developers optimize to any workload.

3. IMPLEMENTATION
We describe four aspects of our implementation: source-code

instrumentation in Section 3.1; latency aggregation in Section 3.2;
results representation in Section 3.3; and an alternative method of
gathering profile results with stackable file systems in Section 3.4.

3.1 Source Code Instrumentation
We have chosen source code instrumentation to insert latency

measurement code into existing file systems, because it is simple
and has small profiling overheads. Our code instrumentation pro-
cess consists of four steps:

1. Copying source files with profiling code to the file system’s
directory and adding them to the Makefile.

2. Scanning all source files for VFS operation vectors.

3. Scanning all source files for operations found in the previous
step, and inserting latency calculation macros in the function
body.

4. Including the header file which declares the latency calcula-
tion macros into every C file that needs it.

These four actions are performed by a shell script using sed.
The source code instrumentation script itself is relatively simple

and is based on the assumption that the file system’s VFS opera-
tions are defined within fixed operation vectors. In particular, every
VFS operation is a member of one of several data structures (e.g.,
struct inode operations). These data structures contain
a list of operations and a hard-coded associated function. For ex-
ample, Figure 3 shows the definition of Ext2’s open-file operations
for directories. The instrumentation script scans every file from the
file system source directory for operations vectors, and stores the
function names it discovers in a buffer. Next, the script scans the

3

file system source files for the functions found during the previous
phase. A profiling startup macro called FSPROF PRE(op) is in-
serted at the beginning of every function found to begin measuring
the latency. Every return statement and the end of void functions is
preceded with an FSPROF POST(op) macro, which ends the la-
tency measurement. In both cases, op is replaced with the name of
the current VFS operation. For non-void functions of type f type,
the return statements are transformed from return foo(x) to:

{
f_type tmp_return_variable = foo(x);
FSPROF_POST(op);
return tmp_return_variable;

}

This transformation captures the latency of the expression foo(x).
Often, file systems use generic functions exported by the kernel.

For example, the Ext2 file system uses the generic read dir
kernel function for its read operation as shown in Figure 3. To
capture the latencies of such external functions, we created a sepa-
rate C file with wrappers for these functions that are instrumented
using the standard macros. These wrapper functions have the names
of the wrapped functions preceded by the FSprof prefix. We use
actual wrapper functions as opposed to inline functions or macros,
so that our function has an address for the operations vector to use.
The same prefix is inserted for all external functions in the opera-
tion vectors. Our wrapper functions are similarly instrumented with
the macros and are called instead of the original external functions.

The instrumentation program is a shell script with sed frag-
ments, and is only 220 lines long. The script does not parse C
program code; instead, it looks for particular patterns within file-
system code. Despite its simplicity, the script successfully instru-
mented all the file systems we tried it on (Ext2 and Ext3 [8], Reis-
erfs 3.6 and 4.0 [22], NFS [20], NTFS [24], and FiST-generated
stackable file systems [33]) under Linux kernel versions 2.4.24 and
2.6.8. We have paid special attention to detecting possible parsing
errors. In particular, the script provides informative error messages
if a deviation from expected patterns is detected.

3.2 Latency Aggregation
The FSPROF PRE(op) macro declares a variable to store the

time and a call to the FSprof pre function that actually writes
the time into that variable. Before returning the invocation time,
the FSprof pre function also updates a per-operation counter.
The FSPROF POST(op) macro calls the FSprof post func-
tion, which takes the operation name and the function invocation
time stored by FSprof pre as arguments. It queries the current
time and calculates the operation latency. Then it adds the latency
to the total operation’s latency value and adds one to bucket k such
that 2k−1

≤ latency < 2k. (Bucket sizes can be configured, but
we primarily used log

2
buckets.) By having separate counters in

the FSprof pre and FSprof post functions, post-processing
scripts can verify that there were no errors in code instrumentation,
storing values, and sending the profile to user-space.

To profile fast VFS operations, we needed to measure the time
with a resolution of tens of nanoseconds. The only simple and
fast way to do it is to use the CPU cycle counter (TSC on x86),
which is built into most modern microprocessors. This method is
fast because querying the counter consists of just a single CPU in-
struction. On Linux, other less precise and slower time-keeping
functions (e.g., gettimeofday) eventually use the same counter. On
multiprocessor systems, Linux synchronizes the cycle counters on
all the CPUs with a precision of one microsecond. The scheduler
is trying to schedule the task on the same CPU as it ran on before.
If, however, a task is rescheduled to another processor, then the

measured latency has only a microsecond precision. Fortunately,
the probability that a fast VFS operation is rescheduled is small
because the quantum of time a process is allowed to run (usually
1/10 of a second) is much longer than the latency of the fast op-
erations. On the other hand, a slow operation’s latency is not se-
riously affected by an errant microsecond, because the buckets are
distributed exponentially. Therefore, we believe that our profile re-
sults are credible even on multiprocessor systems. To be consistent,
we store and analyze all time values in terms of CPU cycles.

The profile can be accessed through an entry in the /proc file
system. Profiles can be read from /proc in plaintext format. Plain-
text is more convenient than binary data, because it is directly human-
readable and powerful text processing utilities can be used to ana-
lyze it. The overhead associated with generating the plaintext pro-
file is small, because the results are generally small and reading the
profile is a rare operation. Writing to the per-file–system /proc
entry resets the profile’s counters.

3.3 Results Representation
We wrote a script that generates 2-dimensional and 3-dimensional

views from the 4-dimensional profile data. We found the following
three data views for a particular VFS-operation especially useful:

• The number of invocations with a given latency within each
elapsed-time interval.

• The total number of invocations with a given latency.
• The total operation latency in each elapsed-time interval.

The last two views are obtained from the original 4D profiles by
summing up the values in one of the dimensions.

In addition, the data-processing script checks the profile for con-
sistency. In particular, for every operation, results in all of the
buckets are summed and then compared with the total number of
operations. These numbers are added to the profile during different
profiling phases, so this verification catches potential code instru-
mentation errors.

We created a set of scripts that generate formatted text views and
Gnuplot [11] scripts to generate 3D and 2D views of the data. All
the figures representing profiles in this paper were automatically
generated.

3.4 Stackable Profiling
Stackable file systems are a layer between the VFS code and

lower-file systems (e.g., Ext2) [33]. They appear as normal file
systems to the VFS code that invokes VFS operations and as the
VFS to the file system they are layered on. Essentially, they pass
through the calls from the VFS to the file system they are layered
on as shown in Figure 4. This makes them ideal for profiling file
systems whose source code is not available. We instrumented a
simple pass-through stackable file system, called Wrapfs, that is
part of the open-source FiST toolkit [33]. We analyze the resulting
overheads for the instrumented stackable Wrapfs in Section 5.1.3.

4. EVALUATION
Using Ext2 as a baseline, we evaluated the overhead of FSprof

with respect to memory usage, CPU cache usage, latency added to
each profiled operation, and execution time.

We conducted all our experiments on a 1.7GHz Pentium 4 ma-
chine with 256KB of cache and 1GB of RAM. It has an IDE system
disk, and the benchmarks ran on a dedicated Maxtor Atlas 15,000
RPM 18.4GB Ultra320 SCSI disk with an Adaptec 29160 SCSI
controller. We unmounted and remounted all tested file systems be-
fore every benchmark run. We also ran a program we wrote called

4

Ext2

Wrapfs
ext2_rename()

User Process

Virtual File System (VFS)

rename()

vfs_rename()

K
er

ne
l

U
se

r

wrapfs_rename()

Lower file system

Figure 4: Stackable File System.

chill that forces the OS to evict unused objects from its caches by
allocating and dirtying as much memory as possible. We ran each
test at least ten times and used the Student-t distribution to compute
95% confidence intervals for the mean elapsed, system, user, and
wait times. Wait time is the elapsed time less CPU time used and
consists mostly of I/O, but process scheduling can also affect it. In
each case the half-widths of the confidence intervals were less than
5% of the mean.

4.1 Memory Usage and Caches
We evaluated the memory and CPU cache overheads of FSprof.

The memory overhead consists of three parts. First, there is some
fixed overhead for the aggregation functions. The initialization
functions are seldom used, so the only functions that affect caches
are the instrumentation and sorting functions which use 231 bytes.
Second, each VFS operation has code added at its entry and exit
points. For all of the file systems we tested, the code-size overhead
was less than 9KB. The third memory overhead comes from storing
profiling results in memory. If only cumulative totals are kept, then
1KB of memory is used. For the lengthy kernel compile bench-
mark with a 2 second resolution, 4MB of memory is used. Since
we merely append to the memory buffer, only a small 1KB active
portion of this 4MB is used at any given time; therefore only 1KB
of CPU data cache is affected.

4.2 CPU Time Overhead
To measure the CPU-time overheads, we ran Postmark [14] on an

unmodified and also on an instrumented Ext2 file system. Postmark
simulates the operation of electronic mail servers. It performs a
series of file system operations such as create, delete, append, and
read. We configured Postmark to use the default parameters, but
we increased the defaults to 20,000 files and 200,000 transactions.
We selected this configuration because it runs long enough to reach
a steady-state and it sufficiently stresses the system.

Overall, the benchmarks showed that wait and user times are not
affected by the added code. The unmodified Ext2 file system used
18.3 seconds of system time, or 16.8% of elapsed time. The in-
strumentation code increased system time by 0.73 seconds (4.0%).
As seen in Figure 5, there are three additional components added
by FSprof: making function calls (solid lines), reading the TSC
register (dotted lines), and storing the results in the correct buck-
ets (dashed lines). To understand the details of this per-operation
overhead, we created two additional file systems. The first con-
tains only empty profiling function bodies, so the only overhead is
calling the profiling functions. The system time increase over Ext2
was 0.28 seconds (1.5%). The second file system reads the TSC
register, but did not include code to sort the information and store it
into buckets. The system time increased by 0.36 seconds over Ext2

(2.0%). Therefore, a 1.5% system time overhead is due to calling
the profiling functions, 0.5% is due to reading the TSC, and 2.0%
is due to sorting and storing the profiling information.

VFS Entry Point

TSC Read

FSprof_pre Return

Sorting and Storing

Full ProfilingTSC ReadFunction CallsExt2

FSprof_post Call

FSprof_pre Call

Profiled Code

VFS Operation body

TSC Read

FSprof_post Return
VFS Exit Point

Key:

Figure 5: Profiled function components.

Not all of the overhead is included within the profile results.
Only the portion between the TSC register reads is included in
the profile, and therefore it defines the minimum value possible
to record in the buckets. Assuming that an equal fraction of the
TSC is read before and after the operation is counted, the delay be-
tween the two reads is approximately equal to half of the overhead
imposed by the file system that only reads the TSC register. We
computed the overhead to be 92 cycles per operation. This result is
confirmed by the fact that the smallest values we observed in any
profile are always in the range of 64–128 cycles. The 92 cycle over-
head is well below most operation latencies, and can influence only
the fastest of VFS operations that perform very little work (e.g., if
sync page is called to write a dirty page to disk, but it returns
immediately if the page is not dirty).

We discuss the performance impact of the stackable profiler in
Section 5.1.3.

5. USAGE EXAMPLES AND ANALYSIS
There are two general ways in which FSprof can be used. In Sec-

tion 5.1 we describe how profiles can be used to study and compare
the behavior of file systems and hardware platforms. In Section 5.2
we describe how FSprof can be used to analyze and compare dif-
ferent workloads on a fixed hardware and software configuration.

The workload we call grep -r in the paper is generated by run-
ning grep -r for a non-existent string on this Linux 2.4.20 source
tree. Standard confidence interval calculation techniques are not
generally applicable for analysis of the generated profiles because
averaging can result in the information loss. For example, the
bdflush thread is started every 5 seconds. Averaging the pro-
filed buckets’ values results in losing information, because slight
variations in the runs are diluted. Therefore, we need to analyze a
single characteristic profile. We ran all our experiments at least 5
times and used the run with the median elapsed time for analysis.
We unmounted and remounted the profiled file systems and purged
the caches using chill between all the runs.

5.1 System Profiling
In this section we discuss three specific analyses. In Section

5.1.1 we demonstrate incremental file system profiling under Ext2;
in Section 5.1.2 we show the impact of lock contention on several
generations of journaling file systems; and in Section 5.1.3 we in-
vestigate the influence of stackable file systems on performance.

5

 1
 10

 100
 1000

 10000 write_super

5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

 1
 10

 100
 1000

 10000 write_inode
 1

 10
 100

 1000
 10000 sync_page

 1
 10

 100
 1000

 10000 release
 1

 10
 100

 1000
 10000 readpage

 1
 10

 100
 1000

 10000 read_inode
 1

 10
 100

 1000
 10000 readdir

 1
 10

 100
 1000

 10000 read
 1

 10
 100

 1000
 10000 open

 1
 10

 100
 1000

 10000 lookup
 1

 10
 100

 1000
 10000 follow_link

Figure 6: Distribution of VFS operations latencies for Ext2 for
the grep -r workload.

5.1.1 Incremental File System Profiling
In this section we show how FSprof can be used to incrementally

analyze file system behavior. The default profiling method provides
information about the latency distribution of the file system’s VFS
operations under a given workload. For example, Figure 6 and Ta-
ble 1 show the latencies for Ext2 for a run of grep -r. This overview
immediately informs us about the operations involved, their impact,
and sometimes, their mutual dependence. For example, lookup
is invoked only one less time than read inode. The fact that the
number of operations in the corresponding peaks is the same, and
that read inode is slightly faster than lookup, suggests that
read inode is called by the lookup operation, which is in fact
the case.

Ext2’s read operation is implemented by calling the general-
purpose Linux generic file read function, which then calls
the readpage operation. Therefore, we can infer from Table 1
that the lookup, read, and readdir operations are responsible
for more than 99% of file system latency under the given workload,
or 11.0 seconds. This conclusion correlates well with the differ-
ence between the overall elapsed time and user time, which is 11.2
seconds. The 0.2 second difference is attributed to the system call
overhead and context switches.

To investigate the origin of the peaks in the distribution, one
needs more statistical information than the distribution of latencies.
For this purpose, we designed a set of macros that can be used in
place of the basic macros that we insert at the beginning and end
of the VFS functions. These extended macros collect the distribu-
tion of other parameters in the same exponential buckets and their
corresponding latencies. Similar to general Exploratory Data Anal-
ysis (EDA) [31] techniques, the decision about which parameters to
capture depends on more detailed information about the VFS oper-
ations and as such cannot be fully automated. We assume that the
person performing incremental analysis of a file system is capable
of reading source code and replacing the default macros with the
extended macros, because this person is most likely a developer or
a maintainer of the file system. The extended macros take the value
being profiled and peak locations as arguments. For each peak, a

Operation Count Delay Delay
(CPU Cycles) (ms)

follow link 110 87,924 0.05
lookup 13,640 3,069,646,302 1,805.67
open 12,915 1,986,912 1.17
read 27,408 7,320,153,190 4,305.97
readdir 1,687 7,736,036,614 4,550.61
read inode 13,641 2,943,218,320 1,731.30
readpage 43,991 477,748,104 281.03
release 12,915 1,291,492 0.76
sync page 20,141 108,733,448 63.96
write inode 12,107 10,567,072 6.22
write super 1 2,552 0.00

Table 1: Total count and total delay of VFS operations of Ext2
for grep -r. 1 sec. = 1.7 billion CPU cycles.

 150
 100

50
0

block#_difference

5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

 1
 10

 100
 1000

 10000 1K*BH_Uptodate

Fastest peak
Middle peak

Slowest peak

Figure 7: Distribution of the block caching information (top)
and the difference between the currently requested block num-
ber and a previously-read block number (bottom) for the three
peaks of read inode.

separate profile is constructed.
For example, we investigated the origin of the three peaks in

Figure 6 (buckets 8–11, 17–18, 20–24) in the read inode oper-
ation’s latency distribution. First, we profiled the function itself by
moving the original macros closer together and locating the sub-
routines responsible for the latency. The top-level VFS operation
functions themselves are usually simple and do not cause any con-
siderable delay. In the case of the Ext2 read inode operation,
the delay is defined by the call to sb bread. In particular, the
macros placed right before and after this call collected the same
information as the macros placed at the beginning and the end of
the whole read inode function. Therefore, our next step was to
understand why sb bread had three peaks. This function takes
two arguments: a pointer to the super block structure and the num-
ber of the physical block on the disk corresponding to the inode.
From the operation latency distributions we know that the leftmost
(fastest) peak is created by very fast operations that complete in
less than two microseconds. We hypothesized that no disk I/O op-
erations were involved and the information is likely in the cache.
To verify our hypothesis, we substituted the default latency profil-
ing macro with the one that profiles boolean values. In particular,
we profiled the buffer head structure’s BH Uptodate state flag
before the sb bread call. The top of Figure 7 shows the profil-
ing results based on BH Uptodate*1024. We did not simply
use BH Uptodate because the profiling tool combines all of the
buckets below 25, which is less than its overhead in CPU cycles.
All of the operations in the first peak of the original profile now fall
into the bucket representing 1024–2047 cycles, which indicates that
they are in the cache. All of the operations in the slower two peaks
fall into the lowest bucket, indicating they are not in the cache.

Next, we investigated the two slower read inode peaks. We
profiled the difference between the block numbers of the current
and the preceding sb bread requests. The results shown on the

6

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09write_super

5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

T
ot

al
 d

el
ay

 (
C

P
U

 c
yc

le
s)

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09write_inode

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09sync_page

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09release

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09readpage

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09readdir

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09read

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09lookup

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09dirty_inode

Number of operations
Total delay (CPU cycles)

Figure 8: Profile of Reiserfs 3.6 (default configuration) under
the grep -r workload.

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09write_super

5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

T
ot

al
 d

el
ay

 (
C

P
U

 c
yc

le
s)

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09write_inode

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09sync_page

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09release

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09readpage

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09readdir

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09read

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09lookup

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09dirty_inode

Number of operations
Total delay (CPU cycles)

Figure 9: Profile of Reiserfs 3.6 (with notail) under the grep -r
workload.

bottom of Figure 7 indicate that there is a strong correlation be-
tween the peaks and the profiled value. In particular, 88% of the
operations in the middle peak are requests to read inodes located
close to a previously read inode. On the other hand, 94% of the
read requests in the slowest peak are requests to read inodes lo-
cated 16K–8M disk blocks away from the last read inode. We know
that blocks with close block numbers are usually located physically
close to each other. Therefore, we can conclude that the middle
peak is defined by the reads that do not require long disk head seeks
and the right peak is defined by the operations that do require them.
These results correspond to our knowledge of Ext2, which uses an
FFS-like allocation scheme [8]. Inodes in the same directory are
stored in the same cylinder group (so they have close block num-
bers), but inodes in different directories are spread throughout the
disk.

5.1.2 Lock Contention and Journaling

 0
 2
 4
 6
 8

 10

 5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

write_super

E
la

ps
ed

 ti
m

e
(4

G
 C

P
U

 c
yc

le
s)

> 100 Operations
11-100 Operations

1-10 Operations

 0
 2
 4
 6
 8

 10

 5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

read

E
la

ps
ed

 ti
m

e
(4

G
 C

P
U

 c
yc

le
s)

> 100 Operations
11-100 Operations

1-10 Operations

Figure 10: Latency distribution compared to elapsed time for
write super (left) and read (right) on Reiserfs 3.6 (default
configuration).

 0

 2

 4

 6

 8

 5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

write_super

E
la

ps
ed

 ti
m

e
(4

G
 C

P
U

 c
yc

le
s) > 100 Operations

11-100 Operations
1-10 Operations

 0

 2

 4

 6

 8

 5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

read

E
la

ps
ed

 ti
m

e
(4

G
 C

P
U

 c
yc

le
s) > 100 Operations

11-100 Operations
1-10 Operations

Figure 11: Latency distribution compared to elapsed time for
write super (left) and read (right) on Reiserfs 3.6 (with no-
tail).

In this section we demonstrate how FSprof can be used to dis-
cover lock contention problems in file systems. We profiled Reis-
erfs 3.6 under the grep -r workload. Reiserfs 3.6 is now the default
file system in several distributions of Linux. The profile with the
default Reiserfs configuration is shown in Figure 8. By default,
Reiserfs enables tail merging which combines small files and the
ends of files into a single disk block. As seen in Figure 9, we
also profiled Reiserfs with the notail option, which disables tail
merging. The first interesting observation we can make is that the
write super operation takes longer than most other operations:
64M–1G CPU cycles (0.038–0.58 seconds) for the default config-
uration, and 16M–128M CPU cycles (0.009–0.075 seconds) with
notail. The second observation is that there is a clear correlation
between the longest dirty inode, read, and write super
operations. When the latency distribution is viewed along with
elapsed time, the correlation becomes especially obvious as shown
in Figures 10 and 11. We can see that the long operations are ex-
ecuted every 5 seconds, which suggests that they are invoked by
the bdflush kernel thread to update access time information of
the accessed inodes. The correlation between several operations is
caused by the write super operation, which always takes the
Big Kernel Lock (BKL), a global kernel lock in Linux. The other
operations must wait for the write super operation to finish.
This observation is especially important because it shows that Reis-
erfs 3.6 blocks not only its own operations, but those of other file
systems and also many other kernel functions, for significant peri-
ods of time.

Figure 12 shows the distribution of latencies of Ext3. The Ext3
write super operation takes less than 4K CPU cycles, because
it updates the journal asynchronously. It calls the Linux journaling
interface’s log start commit function and releases the BKL
shortly after that. In contrast, the Reiserfs 3.6 write super op-
eration calls flush old commits, which returns only after all
updates are written to disk. Since this operation is performed while
the file system’s superblock and the BKL are held, the file system
and the kernel are blocked for the duration of the whole operation.
The bdflush kernel thread is started 5 seconds after the previous
run completes. This suggests that every 5 seconds, several mounted
Reiserfs partitions may each sequentially block the kernel for up to
0.58 seconds—even if the CPU is free to service other processes.

7

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09write_super

5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

T
ot

al
 d

el
ay

 (
C

P
U

 c
yc

le
s)

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09write_inode

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09sync_page

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09release

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09readpage

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09read_inode

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09readdir

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09read

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09open

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09lookup

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09follow_link

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09dirty_inode

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09bmap

Number of operations
Total delay (CPU cycles)

Figure 12: Profile of the Ext3 file system under the grep -r work-
load.

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09release

5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

T
ot

al
 d

el
ay

 (
C

P
U

 c
yc

le
s)

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09sync_page

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09sync_inodes

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09readpages

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09readdir

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09read

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09permission

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09open

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09lookup

 1
 10

 100
 1000

 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09alloc_inode

Number of operations
Total delay (CPU cycles)

Figure 13: Profile of the Reiserfs 4 file system under the grep -r
workload.

At the time of this writing, Reiserfs 4.0 became available in ver-
sion 2.6.8.1-mm2 of the Linux kernel. Using FSprof, we instru-
mented Reiserfs 4.0 under 2.6.8.1-mm2 with kernel preemption en-
abled. We profiled Reiserfs 4.0 under the grep -r workload. Results
presented in Figure 13 demonstrate that the file system behavior is
very different from that of Reiserfs 3.6. According to the general
Linux development trend, Reiserfs 4.0 never takes the BKL. That
is why Reiserfs 4.0 does not use the write super operation—

because it is called with the BKL held. This tends to reduce lock
contention considerably and improve Reiserfs 4.0’s performance
overall. However, inode access time updates are still the longest
individual operations in Reiserfs 4.0. In Reiserfs 4.0, the lookup
operation has only a single peak that is slower than the fastest peak
in Ext3, but faster than the middle peak (the fastest disk I/O) in
Ext3. The lookup operation has also improved significantly from
Reiserfs 3.6 to 4.0.

We also noticed that the readdir operation takes longer on
Reiserfs 4.0 than 3.6. Upon inspection of the Reiserfs 4.0 code, we
found out that its readdir operation also schedules read-aheads
for the inodes of the directory entries being read. This is an opti-
mization which was previously noted by NFSv3 developers—that
readdir operations are often followed by stat(2) operations
(often the result of users running ls -l); that is why NFSv3 im-
plements a special protocol message called READDIRPLUS which
combines directory reading with stat information [7]. Consequently,
Reiserfs 4.0 does more work in readdir, but this initial effort
improves subsequent lookup operations. Overall, this is a good
trade-off for this workload: Reiserfs 4.0 used 60.6% less system
time and I/O time than 3.6.

To verify that the changes in the Reiserfs profile are not caused
by the Linux kernel changes between 2.4 and 2.6, as well as to esti-
mate the impact of kernel preemption, we profiled Ext3 on 2.6.8.1-
mm2. The Ext3 code has not changed significantly between 2.4 and
2.6. The resulting profile is very similar to the one shown in Figure
12. Therefore, we conclude that the improvement in Reiserfs 4.0 is
indeed thanks to the code changes. We have not observed any ar-
tifacts that could be caused by preemptive kernel scheduling. This
is likely because we ran only one process (grep) and there was no
other process to preempt it.

It was previously known that Reiserfs spends a lot of time wait-
ing on locks [5], but FSprof provided us information about the par-
ticular modes of operation and the corresponding conditions that
cause problems. This information can be directly used to optimize
the code and determine the most harmful operation scenarios.

5.1.3 Influence of Stackable File Systems
We used FSprof to evaluate the impact of file system stacking

on the captured profile. Figure 14 shows the latency distribution
of Wrapfs, a thin passthrough stackable file system mounted over
Ext2, and a vanilla Ext2 file system, both evaluated with the grep
-r workload.

The stacking interface has a relatively small CPU overhead, which
affects only the fastest buckets. Unfortunately, the overheads are
different for different VFS operations. This can be explained by
the differences in the way these operations are handled in stackable
file systems. In particular, some operations are passed through with
minimal changes, whereas others require allocation of VFS objects
such as inodes, dentries (directory entries), or memory pages. As
we can see in Figure 14, Wrapfs’s peaks are generally shifted to
the right of Ext2’s peaks, demonstrating an overall overhead. The
overheads of open and lookup exceed 4K CPU cycles, whereas
readdir has an overhead below 1K CPU cycles.

VFS objects have different properties on the lower-level and the
stackable file systems. For example, an encryption file system
maintains cleartext names and data, but the lower file system main-
tains encrypted names and data [33]. Therefore, stackable file sys-
tems create copies of each lower-level object they encounter.

This behavior of the stackable file systems adds overheads as-
sociated with data copying and causes distortions in the latencies
of their read and write operations. For example, read page is
only invoked by the read operation if the page is not found in the

8

 1
 10

 100
 1000

 10000 write_super

5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

 1
 10

 100
 1000

 10000 write_inode
 1

 10
 100

 1000
 10000 sync_page

 1
 10

 100
 1000

 10000 revalidate
 1

 10
 100

 1000
 10000 readpage

 1
 10

 100
 1000

 10000 readlink
 1

 10
 100

 1000
 10000 read_inode

 1
 10

 100
 1000

 10000 readdir
 1

 10
 100

 1000
 10000 read

 1
 10

 100
 1000

 10000 release
 1

 10
 100

 1000
 10000 permission

 1
 10

 100
 1000

 10000 open
 1

 10
 100

 1000
 10000 lookup

 1
 10

 100
 1000

 10000 follow_link
 1

 10
 100

 1000
 10000 flush

Wrapfs (Unmodified)
Ext2

Figure 14: Distribution of operation latencies for unmodified
Wrapfs mounted over Ext2, and for the Ext2 file system, under
a grep -r workload.

cache. Therefore, only read page operations that require disk
accesses are captured and passed down. The sync page opera-
tion is never invoked because pages associated with Wrapfs inodes
are never marked dirty.

Most importantly, duplicate copies of data pages effectively re-
duce the page cache size in half. This can result in serious perfor-
mance overheads when a workload fits into the page cache but not
into less than 50% of the page cache. Unfortunately, in Linux, each
page cache object is linked with the corresponding inode and there-
fore double representation of inodes implies double caching of data
pages.

We found a relatively simple solution to the problem. We use
data pages associated with the upper inode for both the lower and
upper file system layers. In particular, the data pages belong to the
upper inode but are assigned to lower-level inodes for the short du-
ration of the lower-level page-based operations. Here is an example
of the modified readpage operation:

page->mapping = lower_inode->i_mapping;
err = lower_inode->i_mapping->a_ops->readpage(

lower_file, page);
page->mapping = upper_inode->i_mapping;

The resulting code allows profiling of page-based operations,
and also eliminates data copying and double caching. We analyzed
the Linux kernel functions that directly or indirectly use inode and
cache page connectivity and found that in all these cases, the above
modification works correctly. We tested the resulting stackable file
system on a single-CPU and multi-CPU machines under the com-

 1
 10

 100
 1000

 10000 write_super

5 10 15 20 25 30 35

Bucket (2n-1 <= x < 2n CPU Cycles)

N
um

be
r

of
 o

pe
ra

tio
ns

 1
 10

 100
 1000

 10000 write_inode
 1

 10
 100

 1000
 10000 sync_page

 1
 10

 100
 1000

 10000 revalidate
 1

 10
 100

 1000
 10000 release

 1
 10

 100
 1000

 10000 readpage
 1

 10
 100

 1000
 10000 readlink

 1
 10

 100
 1000

 10000 read_inode
 1

 10
 100

 1000
 10000 readdir

 1
 10

 100
 1000

 10000 read
 1

 10
 100

 1000
 10000 permission

 1
 10

 100
 1000

 10000 open
 1

 10
 100

 1000
 10000 lookup

 1
 10

 100
 1000

 10000 follow_link
 1

 10
 100

 1000
 10000 flush

Wrapfs (Without Double Caching)
Ext2

Figure 15: Distribution of operation latencies for Wrapfs with-
out double caching mounted over Ext2, and for the Ext2 file
system, under a grep -r workload.

pile and Postmark workloads. No races or other problems were
observed.

As can be seen in Figure 15, the no-double-caching patch de-
scribed above decreases the system time compared to the original
Wrapfs, has a cache size that is the same as Ext2, and also pre-
vents double caching from influencing the cache page related oper-
ations. In particular, the profile of the modified file system has vir-
tually no difference from the plain Ext2 file system for the read,
read page, and sync page operations.

Overall, a stackable file system does influence the profile of the
lower-level file system, but it still can be used to profile a subset
of VFS operations when the source code is not available. Even for
operations whose latency values are affected by the stackable file
system, the peaks and overall structure of the profile usually remain
the same. Therefore, key file system and workload characteristics
can be collected.

5.2 Workload Characterization
Compile benchmarks are often used to evaluate file system be-

havior. We show that even seemingly similar mixes of source files
generate considerably different VFS operation mixes. Therefore,
results obtained during different compile benchmarks can not be
fairly compared with each other.

We profiled the build process of three packages commonly used
as compile benchmarks: (1) SSH 2.1.0, (2) Am-utils 6.1b3, and
(3) the Linux 2.4.20 kernel with the default configuration. Table
2 shows the general characteristics of the packages. The build
process of these packages consists of a preparation and a com-

9

Am-utils SSH Linux Kernel
Directories 25 54 608
Files 430 637 11,352
Lines of Code 61,513 170,239 4,490,349
Code Size (Bytes) 1,691,153 5,313,257 126,735,431
Total Size (Bytes) 8,441,856 9,068,544 174,755,840

Table 2: Compile benchmarks’ characteristics.

pilation phase. The preparation phase consists of running GNU
configure scripts for SSH and Am-utils, and running “make
defconfig dep” for the Linux kernel. We analyzed the prepa-
ration and compilation phases separately, as well as together (which
we call a “whole build”). Before the preparation and compila-
tion phases, we unmounted the file system in question, purged the
caches using our custom chill program, and finally remounted the
tested file systems. For the full build, we performed this cache-
purging sequence only before the preparation phase. This means
that the number of invocations of every operation in the case of full
build is the sum of the invocations of the same operation during the
preparation and compilation stages. However, the full-build delays
are not the sum of the preparation and compilation delays, because
we did not purge the caches between phases for the full build. This
way it was possible to compare the compilation profiles separately.
The delays of the compilation phase as a part of the build process
can be obtained by subtracting the preparation phase delays from
the full build delays.

Figure 16 shows the distribution of the total number of invoca-
tions and the total delay of all the Ext2 VFS operations used during
the build process of SSH, Am-utils, and the Linux kernel. Note
that each of the three graphs uses different scales for the number of
operations and the total delay.

Figures 16(a) and 16(b) show that even though the SSH and Am-
utils build process sequence, source-file structure, and total sizes
appear to be similar, their operation mixes are quite different; more-
over, the fact that SSH has nearly three times the lines of code of
Am-utils is also not apparent from analyzing the figures. In par-
ticular, the preparation phase dominates in the case of Am-utils
whereas the compilation phase dominates the SSH build. More im-
portantly, an Am-utils build writes more than it reads, whereas the
SSH build reads more than it writes: the ratio of the number of
reads to the number of writes is 26,458

35,060
= 0.75 for Am-utils and

42,381

33,108
= 1.28 for SSH. This can result in performance differences

for read-oriented or write-oriented file systems.
Not surprisingly, the kernel build process’s profile differs from

both SSH and Am-utils. As can be seen in Figure 16(c), both of the
kernel build phases are strongly read biased. Another interesting
observation is that the kernel build phase populates the cache with
most of the meta-data and data early on. Figures 1 and 2 on page 3
show the profile of the lookup operation during the kernel build
process, where we see that the preparation phase causes the vast
majority of lookups that incur disk I/O.

Table 3 shows the lookup operation’s latency peaks for dif-
ferent build processes. We can see that the Am-utils build pro-
cess has the least cache misses. Therefore, it has the minimal
average lookup operation delay (the only metric measurable by
some other kernel profilers such as kernprof [26]). SSH’s average
lookup delay is only slightly higher because the higher percent-
age of misses is compensated by the high fraction of disk opera-
tions that do not require long disk-head seeks. The Linux kernel
build process incurs a higher proportion of buffer cache misses and
at the same time has a high proportion of the long disk-head seeks.
Therefore, its average lookup delay is the highest.

 15
 30
 45
 60

 250
 500
 750
 1000
 1250

both

co
m

m
it_

w
rit

e

cr
ea

te

de
le

te
_i

no
de

fo
llo

w
_l

in
k

io
ct

l

lin
k

lls
ee

k

lo
ok

up

m
kd

ir

m
m

ap

op
en

pr
ep

ar
e_

w
rit

e

pu
t_

in
od

e

re
ad

re
ad

di
r

re
ad

_i
no

de

re
ad

pa
ge

re
le

as
e

re
na

m
e

rm
di

r

sy
m

lin
k

sy
nc

_p
ag

e

tr
un

ca
te

un
lin

k

w
rit

e

w
rit

e_
in

od
e

Operation

N
um

be
r

of
 o

pe
ra

tio
ns

 (
x1

03)

T
ot

al
 d

el
ay

 (
10

6 C
P

U
 c

yc
le

s)

 15
 30
 45
 60

 250
 500
 750
 1000
 1250

compilation

 15
 30
 45
 60

 250
 500
 750
 1000
 1250

preparation

Number of operations
Total delay (CPU cycles)

(a) SSH 2.1.0

 15
 30
 45

 100
 200
 300
 400both

co
m

m
it_

w
rit

e

cr
ea

te

de
le

te
_i

no
de

fo
llo

w
_l

in
k

io
ct

l

lls
ee

k

lo
ok

up

m
kd

ir

m
m

ap

op
en

pr
ep

ar
e_

w
rit

e

pu
t_

in
od

e

re
ad

re
ad

di
r

re
ad

_i
no

de

re
ad

pa
ge

re
le

as
e

re
na

m
e

rm
di

r

sy
m

lin
k

sy
nc

_p
ag

e

tr
un

ca
te

un
lin

k

w
rit

e

w
rit

e_
in

od
e

Operation

N
um

be
r

of
 o

pe
ra

tio
ns

 (
x1

03)

T
ot

al
 d

el
ay

 (
10

6 C
P

U
 c

yc
le

s)

 15
 30
 45

 100
 200
 300
 400compilation

 15
 30
 45

 100
 200
 300
 400preparation

Number of operations
Total delay (CPU cycles)

(b) Am-Utils 6.1b3

 50
 100
 150
 200

 1000
 2000
 3000
 4000
 5000both

co
m

m
it_

w
rit

e

cr
ea

te

de
le

te
_i

no
de

fo
llo

w
_l

in
k

io
ct

l

lls
ee

k

lo
ok

up

m
kd

ir

m
m

ap

op
en

pr
ep

ar
e_

w
rit

e

pu
t_

in
od

e

re
ad

re
ad

di
r

re
ad

_i
no

de

re
ad

pa
ge

re
le

as
e

re
na

m
e

sy
m

lin
k

sy
nc

_p
ag

e

tr
un

ca
te

un
lin

k

w
rit

e

w
rit

e_
in

od
e

Operation

N
um

be
r

of
 o

pe
ra

tio
ns

 (
x1

03)

T
ot

al
 d

el
ay

 (
10

6 C
P

U
 c

yc
le

s)

 50
 100
 150
 200

 1000
 2000
 3000
 4000
 5000compilation

 50
 100
 150
 200

 1000
 2000
 3000
 4000
 5000preparation

Number of operations
Total delay (CPU cycles)

(c) Kernel 2.4.20

Figure 16: Various compile profiles on Ext2. Note that each plot
uses a different scale for both the operation count and delay.
The count uses the left scale, and the delay uses the right scale.

Am-utils SSH Linux Kernel
Fastest peak 1,817 2,848 10,423
Middle peak 9 48 79
Slowest peak 25 32 227
Cache misses (%) 1.9 2.7 2.9
Average delay 83,022 95,697 186,672

Table 3: Distribution of the Ext2 lookup operations among
the three peaks representing a page cache hit, short disk seek,
and long disk seek. The cache miss ratio is calculated as the
sum of the operations in the middle and slowest peaks over the
total number of operations.

We see that not only can we not directly compare different com-
pile benchmarks, but we can also not extrapolate results based on
summary information about the source files such as the package
size, number of lines of code, etc. The order and type of file-system
operations can seriously change the delay of VFS operations, and
hence the benchmark CPU and I/O times.

6. RELATED WORK
The simplest and oldest way to profile code is to measure the

total program execution time and its user level and in-kernel ex-

10

ecuted components in different conditions [29]. In the late 1970s,
new code profiling techniques emerged. UNIX prof [3] instruments
source code at function entry and exit points. An instrumented pro-
gram’s program counter is sampled at fixed time intervals. The
resulting samples are used to construct histograms with the number
of individual functions invoked and their average execution times.
Program counter sampling is a relatively inexpensive way to cap-
ture how long a program fragment is executed in multi-tasking en-
vironments where a task can be rescheduled at any time during any
function execution interval. Gprof [12] additionally records infor-
mation about the callers of individual functions, which allows it to
construct call graphs. Gprof was successfully used for kernel pro-
filing in the early 1980s [16]. However, instrumented kernels had
a 20% increase in code size and an execution time overhead up to
25%. Kernprof [26] uses a combination of PC sampling and kernel
hooks to build profiles and call graphs. Kernprof interfaces with the
Linux scheduler to count time that a kernel function spent sleeping
(e.g., to perform I/O) in the profile.

More detailed profiles with granularity as small as a single code
line can be collected using the tcov [27] profiler. Most modern
CPUs contain special hardware counters for use by profilers. The
hardware counters allow correlation between profiled code execu-
tion, CPU cache states, branch prediction functionality, and ordi-
nary CPU clock counts [4]. Essentially, all modern CPU execution
profilers rely on some combination of program counter sampling,
scheduler instrumentation, functions entry/exit point instrumenta-
tion, and hardware counters. Finally, there are special tools to mon-
itor particular problems such as lock contention [6, 19] or memory
leaks and cache purging [25].

In general, fewer and less developed tools are available to pro-
file disk performance, which is highly dependent on the workload.
Disk operations include mechanical latencies to position the head.
The longest operation is seeking, or moving the head from one track
to another. Therefore, as much as possible, file systems designs
avoid seeks [17, 23]. Unfortunately, modern hard drives expose
very little information about their internal data placement to the
OS. The OS can only assume that blocks with close logical block
numbers are also close to each other on the disk. Only the disk
drive itself can schedule the requests in an optimal way and only
the disk drive has statistical information about its internal opera-
tions. Some disk vendors make statistics, such as the number of
seek operations, available through the SMART [1] interface. The
Linux kernel optionally maintain statistics about block-device I/O
operations and makes them available through the /proc file sys-
tem, yet little information is reported about their timing.

Network packet sniffers [13] can be used to capture and analyze
network traffic of network-based file systems [9]. This technique
is useful for analyzing a protocol, but both the client and server
often do additional processing that is not captured in the trace:
searching caches, allocating objects, reordering requests, and more.
iSCSI can also be traced at the network layer, and Fiber Channel
connections can be traced at a hardware level [15]. These tech-
niques share the fundamental disadvantage that they can only cap-
ture block-level information. Additionally, Fiber Channel tracing
requires specialized hardware.

There are several methods for integrating profiling into code.
The most popular one is direct source code modification because
it imposes minimal overhead and is usually simple. For example,
tracking of lock contention or I/O activity may require modification
of several fixed places in the kernel source code to profile a variety
of file systems. If, however, every function requires profiling mod-
ifications, then the compiler may conduct such an instrumentation.
For example, gcc -p automatically inserts calls to mcount at the

beginning and at the end of every function. The custom mcount
function is then called on each function entry and exit point. More
sophisticated approaches include run-time kernel code instrumen-
tation [28] and layered call interception. For example, the Linux
Security Modules [32] allow control interception for many OS op-
erations. Similarly, stackable file systems allow one to insert a thin
layer between the VFS and other file systems [33].

Often, to profile a file system, various combinations of bench-
marks and microbenchmarks are run on top of the file system [5,
10, 21, 2], and conclusions are drawn from those results. Unfortu-
nately, this is an inaccurate method of file system profiling, because
these benchmarks operate in terms of system calls, which do not
map precisely to file system operations. Often, the only result from
a benchmark is a single metric (e.g., elapsed time or transactions
per second). For complex benchmarks, these metrics can hide fun-
damental or pathological system behavior that may become visible
under different workloads.

7. CONCLUSIONS
We designed and developed FSprof, the first tool specifically

created to profile file systems. FSprof produces accurate profiles.
FSprof’s profiles are generated based on VFS operations, not sys-
tem calls, block-level I/O operations, or CPU utilization. FSprof’s
profiles capture operations as the file system implements them, which
is more useful for analysis. File systems perform both CPU and
I/O-intensive tasks; FSprof accounts for both of these important
components. FSprof is efficient: it has low per-operation overhead
of less than 100 CPU cycles. When run with an I/O-intensive work-
load, FSprof’s elapsed time overhead is less than 1%.

We used FSprof to collect and analyze profiles for several pop-
ular file systems (Ext2, Ext3, Reiserfs, and Wrapfs), in only a
short period of time. To aid this analysis, we developed auto-
matic processing and visualization scripts to present FSprof results
clearly and concisely. We discovered, investigated, and explained
bi-modal and tri-model latency distributions within several com-
mon VFS operations. We also identified pathological performance
problems related to lock contention. We quantified the effects of
double caching, a technique used by many file system interception
architectures, on stackable file systems. Finally, we profiled sev-
eral large compile benchmarks, and found that they do not follow
a fixed pattern. For example, traditional metrics like, lines of code
and number of source files, do not sufficiently describe a compile
benchmark because different compilation patterns generate suffi-
ciently different VFS operations mixes.

7.1 Future Work
We plan to instrument the Linux dirty-buffer flushing daemon,

bdflush. Currently, asynchronous writes are not handled by the
VFS, but rather by block device drivers. The bdflush daemon
directly invokes block device driver functions after the file system
marks a buffer as dirty. We will modify bdflush such that these
buffers can be tied to the correct FSprof file-system profile.

We plan to use FSprof to characterize more workloads, and how
they affect file system operations. We also plan to use FSprof to
examine how the OS’s state affects benchmark results. For exam-
ple, many researchers unmount the tested file system between tests.
However, this clears only part of the caches (this is why we also ran
chill to purge the caches). The location of meta-data and data on
the disk changes over the time, which may result in significant per-
formance changes. We plan to quantify the effects of file-system
aging using FSprof.

We plan to develop a stackable VFS interception mechanism that
does not require separate copies of objects (e.g., inodes, dentries, or

11

pages). It will replace operation vectors dynamically with FSprof-
instrumented wrappers. This will reduce the stacking overhead, re-
move influences on OS caches, and simplify stackable code paths.

FSprof adds a small overhead on each function call, yet this over-
head can differ from machine to machine. FSprof can automatically
measure its self-delay on startup and subtract it from the profiling
results to increase the profiling resolution for very fast operations.

8. REFERENCES
[1] AT Atachment with Packet Interface - 7: Volume 3 Serial

Transport Protocols and Physical Interconnect
(ATA/ATAPI-7 V3). Technical Report T13/1532D, Revision
4b, International Committee on Information Technology
Standards (INCITS), April 2004.

[2] S. Aiken, D. Grunwald, A. R. Pleszkun, and J. Willeke. A
Performance Analysis of the iSCSI Protocol. In Proceedings
of the 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST’03), pages
123–134. IEEE Computer Society, April 2003.

[3] Bell Laboratories. prof, January 1979. Unix Programmer’s
Manual, Section 1.

[4] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci.
A scalable cross-platform infrastructure for application
performance tuning using hardware counters. In Proceedings
of the 2000 ACM/IEEE conference on Supercomputing,
page 42, 2000.

[5] R. Bryant, R. Forester, and J. Hawkes. Filesystem
Performance and Scalability in Linux 2.4.17. In Proceedings
of the Annual USENIX Technical Conference, FREENIX
Track, pages 259–274, Monterey, CA, June 2002.

[6] R. Bryant and J. Hawkes. Lockmeter: Highly-informative
instrumentation for spin locks in the linux kernel. In
Proceedings of the 4th Annual Linux Showcase and
Conference, October 2000.

[7] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3
Protocol Specification. Technical Report RFC 1813,
Network Working Group, June 1995.

[8] R. Card, T. Ts’o, and S. Tweedie. Design and
implementation of the second extended filesystem. In
Proceedings to the First Dutch International Symposium on
Linux, Seattle, WA, December 1994.

[9] D. Ellard and M. Seltzer. New NFS Tracing Tools and
Techniques for System Analysis. In Proceedings of the
Annual USENIX Conference on Large Installation Systems
Administration, San Diego, CA, October 2003.

[10] D. Ellard and M. Seltzer. NFS Tricks and Benchmarking
Traps. In Proceedings of the Annual USENIX Technical
Conference, FREENIX Track, pages 101–114, San Antonio,
TX, June 2003.

[11] Gnuplot Central. www.gnuplot.info.
[12] S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof: A

call graph execution profiler. In Proceedings of the 1982
SIGPLAN symposium on Compiler construction, pages
120–126, June 1982.

[13] L. N. R. Group. The TCPDump/Libpcap site.
www.tcpdump.org, February 2003.

[14] J. Katcher. PostMark: A New Filesystem Benchmark.
Technical Report TR3022, Network Appliance, 1997.
www.netapp.com/tech_library/3022.html.

[15] LeCroy. FCTracer 4G.
www.catc.com/products/FCTracer4G.html, 2004.

[16] M. K. McKusick. Using gprof to tune the 4.2BSD kernel.
http:
//docs.freebsd.org/44doc/papers/kerntune.html,
May 1984.

[17] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX. ACM Transactions on Computer
Systems, 2(3):181–97, August 1984.

[18] C. Minshall. fsx.
http://cvsup.freebsd.org/cgi-bin/cvsweb/

cvsweb.cgi/src/tools/regression/fsx/, December
2001.

[19] A. Morton. sleepometer. www.kernel.org/pub/linux/
kernel/people/akpm/patches/2.5/2.5.74/2.5.
74-mm1/broken-out/sleepometer.patch, July 2003.

[20] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel,
and D. Hitz. NFS version 3 design and implementation. In
Proceedings of the Summer USENIX Technical Conference,
pages 137–52, Boston, MA, June 1994.

[21] P. Radkov, L. Yin, P. Goyal, P. Sarkar, and P. Shenoy. A
Performance Comparison of NFS and iSCSI for
IP-Networked Storage. In Proceedings of the Third USENIX
Conference on File and Storage Technologies (FAST 2004),
pages 101–114, San Francisco, CA, March/April 2004.

[22] H. Reiser. ReiserFS. www.namesys.com/v4/v4.html,
October 2004.

[23] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. In
Proceedings of 13th ACM Symposium on Operating Systems
Principles, pages 1–15, Asilomar Conference Center, Pacific
Grove, CA, October 1991. Association for Computing
Machinery SIGOPS.

[24] M. Russinovich. Inside Win2K NTFS, Part 1.
www.winnetmag.com/Articles/ArticleID/15719/
pg/2/2.html, November 2000.

[25] J. Seward, N. Nethercote, and J. Fitzhardinge. Valgrind.
http://valgrind.kde.org, August 2004.

[26] Silicon Graphics, Inc. Kernprof (Kernel Profiling).
http://oss.sgi.com/projects/kernprof, 2003.

[27] Sun Microsystems. Analyzing Program Performance With
Sun Workshop, February 1999.
http://docs.sun.com/db/doc/805-4947.

[28] A. Tamches. Fine-Grained Dynamic Instrumentation of
Commodity Operating System Kernels. PhD thesis,
University of Wisconsin-Madison, 2001.

[29] K. Thompson and D. M. Ritchie. tm. Bell Laboratories,
November 1971. Unix Programmer’s Manual, Section 1.

[30] A. Veitch and K. Keeton. The Rubicon workload
characterization tool. Technical Report HPL-SSP-2003-13,
Storage Systems Department, Hewlett Packard Laboratories,
March 2003. www.hpl.hp.com/research/ssp/papers/
rubicon-tr.pdf.

[31] P. F. Velleman and D. C. Hoaglin. Applications, Basics, and
Computing of Explaratory Data Analysis. Duxbury Press,
Boston, MA, USA, 1981.

[32] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. K.
Hartman. Linux Security Modules: General Security Support
for the Linux Kernel. In Proceedings of the 11th USENIX
Security Symposium, San Francisco, CA, August 2002.

[33] E. Zadok and J. Nieh. FiST: A Language for Stackable File
Systems. In Proceedings of the Annual USENIX Technical
Conference, pages 55–70, San Diego, CA, June 2000.

12

