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Abstract

Traditional file system development is difficult. Stack-
able file systems promise to ease the development of file
systems by offering a mechanism for incremental develop-
ment. Unfortunately, existing methods often require writ-
ing complex low-level kernel code that is specific to a sin-
gle operating system platform and also difficult to port.

We propose a new language,FiST, to describe stackable
file systems. FiST uses operations common to file system
interfaces. From a single description, FiST’s compiler pro-
duces file system modules for multiple platforms. The gen-
erated code handles many kernel details, freeing developers
to concentrate on the main issues of their file systems.

This paper describes the design, implementation, and
evaluation of FiST. We extended file system functionality
in a portable way without changing existing kernels. We
built several file systems using FiST on Solaris, FreeBSD,
and Linux. Our experiences with these examples shows the
following benefits of FiST: average code size over other
stackable file systems is reduced ten times; average devel-
opment time is reduced seven times; performance overhead
of stacking is 1–2%.

1 Introduction

File systems have proven to be useful in enriching system
functionality. The abstraction of folders with files contain-
ing data is natural for use with existing file browsers, text
editors, and other tools. Modifying file systems became
a popular method of extending new functionality to users.
However, developing file systems is difficult and involved.
Developers often use existing code for native in-kernel file
systems as a starting point[15, 23]. Such file systems are
difficult to write and port because they depend on many op-
erating system specifics, and they often contain many lines
of complex operating systems code, as seen in Table 1.

User-level file systems are easier to develop and port be-
cause they reside outside the kernel[16]. However, their

Media Common Avg. Code Size
Type File System (C lines)
Hard Disks UFS, FFS, EXT2FS 5,000–20,000
Network NFS 6,000–30,000
CD-ROM HSFS, ISO-9660 3,000–6,000
Floppy PCFS, MS-DOS 5,000–6,000

Table 1:Common Native Unix File Systems and Code Sizes for
Each Medium

performance is poor due to the extra context switches these
file systems must incur. These context switches can affect
performance by as much as an order of magnitude[26, 27].

Stackable file systems[19] promise to speed file system
development by providing an extensible file system inter-
face. This extensibility allows new features to be added
incrementally. Several new extensible interfaces have been
proposed and a few have been implemented[8, 15, 18, 22].
To improve performance, these stackable file systems were
designed to run in the kernel. Unfortunately, using these
stackable interfaces often requires writing lots of complex
C kernel code that is specific to a single operating system
platform and also difficult to port.

More recently, we introduced a stackable template sys-
tem called Wrapfs[27]. It eases up file system development
by providing some built-in support for common file system
activities. It also improves portability by providing kernel
templates for several operating systems. While working
with Wrapfs is easier than with other stackable file systems,
developers still have to write kernel C code and port it using
the platform-specific templates.

In previous approaches, performance and portability
could not be achieved together. To perform well, a file sys-
tem should run in the kernel, not at user level. Kernel code,
however, is much more difficult to write and port than user-
level code. To ease the problems of developing and port-
ing stackable file systems that perform well, we propose a
high-level language to describe such file systems. There
are three benefits to using a language:
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1. Simplicity: A file system language can provide fa-
miliar higher-level primitives that simplify file system
development. The language can also define suitable
defaults automatically. These reduce the amount of
code that developers need to write, and lessen their
need for extensive knowledge of kernel internals, al-
lowing even non-experts to develop file systems.

2. Portability: A language can describe file systems us-
ing an interface abstraction that is common to oper-
ating systems. The language compiler can bridge the
gaps among different systems’ interfaces. From a sin-
gle description of a file system, we could generate file
system code for different platforms. This improves
portability considerably. At the same time, however,
the language should allow developers to take advan-
tage of system-specific features.

3. Specialization: A language allows developers to cus-
tomize the file system to their needs. Instead of having
one large and complex file system with many features
that may be configured and turned on or off, the com-
piler can produce special-purpose file systems. This
improves performance and memory footprint because
specialized file systems include only necessary code.

This paper describes the design and implementation of
FiST, a File System Translatorlanguage for stackable file
systems. FiST lets developers describe stackable file sys-
tems at a high level, using operations common to file sys-
tem interfaces. With FiST, developers need only describe
the core functionality of their file systems. The FiST lan-
guage code generator,fistgen, generates kernel file system
modules for several platforms using a single description.
We currently support Solaris, FreeBSD, and Linux.

To assist fistgen with generating stackable file sys-
tems, we created a minimal stackable file system template
called Basefs. Basefs adds stacking functionality missing
from systems and relieves fistgen from dealing with many
platform-dependent aspects of file systems. Basefs does
not require changes to the kernel or existing file systems.
Its main function is to handle many kernel details relating
to stacking. Basefs provides simple hooks for fistgen to
insert code that performs common tasks desired by file sys-
tem developers, such as modifying file data or inspecting
file names. That way, fistgen can produce file system code
for any platform we port Basefs to. The hooks also allow
fistgen to include only necessary code, improving perfor-
mance and reducing kernel memory usage.

We built several example file systems using FiST. Our
experiences with these examples shows the following ben-
efits of FiST compared with other stackable file systems:
average code size is reduced ten times; development time
is reduced seven times; performance overhead of stacking
is less than 2%, and unlike other stacking systems, there is
no performance overhead for native file systems.

Our focus in this paper is to demonstrate how FiST sim-
plifies the development of file systems, provides write-once
run-anywhere portability across UNIX systems, and re-
duces stacking overhead through file system specialization.
The rest of this paper is organized as follows. Section 2 de-
tails the design of FiST, and describes the FiST language,
fistgen, and Basefs. Section 3 discusses key implemen-
tation and portability details. Section 4 describes several
example file systems written using FiST. Section 5 evalu-
ates the ease of development, the portability, and the perfor-
mance of our file systems. Section 6 surveys related work.
Finally, Section 7 concludes and explores future directions.

2 Design

FiST is a high level language providing a file system ab-
straction. Figure 1 shows the hierarchy for different file
system abstractions. At the lowest level reside file sys-
tems native to the operating system, such as disk based and
network based file systems. They are at the lowest level
because they interact directly with device drivers. Above
native file systems are stackable file systems such as the
examples in Section 4, as well as Basefs. These file sys-
tems provide a higher abstraction than native file systems
because stackable file systems interact only with other file
systems through a well definedvirtual file system interface
(VFS)[11]. The VFS providesvirtual nodes(vnodes), an
abstraction of files across different file systems. However,
both these levels are system specific.

Basefs templates

FiST Language

Low-Level File Systems (UFS, NFS, etc.)

(lofs, cryptfs, aclfs, unionfs, etc.)
Stackable (VFS) File Systems

Figure 1: FiST Structural Diagram. Stackable file systems, in-
cluding Basefs, are at the VFS level, and are above low-levelfile
systems. FiST descriptions provide a higher abstraction than that
provided by the VFS.

At the highest level, we define the FiST language. FiST
abstracts the different vnode interfaces acrossdifferentop-
erating systems into a single common description language,
because it is easier to write file systems this way. We found
that while vnode interfaces differ from system to system,
they share many similar features. Our experience shows
that similar file system concepts exist in other non-Unix
systems, and our stacking work can be generalized to in-
clude them. Therefore, we designed the FiST language
to be as general as possible: we mirror existing platform-
specific vnode interfaces, and extend them through the
FiST language in a platform independent way. This al-
lows us to modify vnode operations and the arguments they
pass in an arbitrary way, providing great design flexibil-
ity. At the same time, this abstraction means that stackable
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file systems cannot easily access device drivers and control,
for example, block layout of files on disks and the existing
structure of meta-data (inodes).

FiST does not require that applications be changed. The
default behavior of produced code maintains compatibility
with existing file system APIs. FiST does allow, however,
the creation of special-purpose file systems that can extend
new functionality to applications.

fistgen

Stackable File System Sources

Basefs Templates

FiST Input File

Figure 2:FiST Operational Diagram. Fistgen reads a FiST input
file, and with the Basefs templates, produces sources for a new
file system.

The overall operation of the FiST system is shown in
Figure 2. The figure illustrates how the three parts of FiST
work together: the FiST language, fistgen, and Basefs. File
system developers write FiST input files to implement file
systems using the FiST language.Fistgen, the FiST lan-
guage code parser and file system code generator, reads
FiST input files that describe the new file system’s func-
tionality. Fistgen then uses additional input files, the Basefs
templates. These templates contain the stacking support
code for each operating system and hooks to insert devel-
oper code. Fistgen combines the functionality described
in the FiST input file with the Basefs templates, and pro-
duces new kernel C sources as output. The latter imple-
ment the functionality of the new file system. Developers
can, for example, write simple FiST code to manipulate
file data and file names. Fistgen, in turn, translates that
FiST code into C code and inserts it at the right place in the
templates, along with any additional support code that may
be required. Developers can also turn on or off certain file
system features, and fistgen will conditionally include code
that implements those features.

2.1 A Quick Example: Snoopfs

To illustrate the FiST development process, we contrast it
with traditional file system development methods using a
simple example similar to Watchdogs[2]. Suppose a file
system developer wants to write a file system that will warn
of any possible unauthorized access to users’ files. The
main idea is that only the files’ owner or the root user are
allowed access. Any other user who might be attempting to
find files that belong to another user, would normally get a
“permission denied” error code. However, the system does
not produce an alert when such an attempt is made. This
new snooping file system(Snoopfs) will log these failed
attempts.

The one place where such a check should be made is in
the lookup routine that is used to find a file in a directory.
To do so without FiST, the developer has to do the follow-
ing:

1. locate an operating system with available sources for
one file system

2. read and understand the code for that file system and
any associated kernel code

3. make a copy of the sources, and carefully modify them
to include the new functionality

4. compile the sources into a new file system, possibly
rebuilding a new kernel and rebooting the system

5. mount the new file system, test, and debug as needed

After completing this, the developer is left with one mod-
ified file system for one operating system. The amount of
code that has to be read and understood ranges in the thou-
sands of lines (Table 1). The process has to be repeated for
each new port to a new platform. In addition, changes to
native file system are unlikely to be accepted by operating
system maintainers, and have to be maintained indepen-
dently.

In contrast, the normal procedure for developing code
with FiST is:

1. write the code in FiST once
2. run fistgen on the input file
3. compile the produced sources into a loadable kernel

module, and load it into a running system
4. mount the new file system, test, and debug as needed

Debugging code can be turned on in FiST to assist in the
development of the new file system. There is no need to
have kernel sources or be familiar with them; there is no
need to write or port code for each platform; and there is
no need to rebuild or reboot the kernel. Furthermore, the
same developer can write Snoopfs using a small number of
lines of FiST code:

%op:lookup:postcall f
if ((fistLastErr() == EPERM ||

fistLastErr() == ENOENT) &&
$0.owner != %uid && %uid != 0)

fistPrintf("snoopfs detected access by uid %d,n
pid %d, to file %snn", %uid, %pid, $name);g

This short FiST code inserts an “if” statement after the
normal call to the lookup routine. The code checks if the
previous lookup call failed with one of two particular er-
rors, who the owner of the directory is, who the effective
running user is, and then decides whether to print the warn-
ing message.

This single FiST description is portable, and can be com-
piled on each platform that we have ported our templates to
(currently three).
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2.2 The File System Model

A FiST-produced file system runs in the kernel, as seen in
Figure 3. FiST file systems mirror the vnode interface both
above and below. The interface to user processes is the
system call interface. FiST does not change either the sys-
tem call interface or the vnode interface. Instead, FiST can
change information passed and returned through the inter-
faces.

A user process generally accesses a file system by exe-
cuting a system call, which traps into the kernel. The ker-
nel VFS then translates the system call to a vnode opera-
tion, and calls the corresponding file system. If the latter
is a FiST-produced file system, it may call another stacked
file system below. Once the execution flow has reached
the lowest file system, error codes and return values begin
flowing upwards, all the way to the user process.

System Call

Interface

user process

Vnode

Interface

Vnode

Interface

system calls
mount() data
ioctl() data

file system data,
operations, and
error codes.

Kernel
and error codes.
file system data

Usererror codes

Lower File System

Virtual File System (VFS)

FiST−produced file system

Figure 3:Information and execution flow in a stackable system.
FiST does not change the system call or vnode interfaces, butal-
lows for arbitrary data and control operations to flow in bothdi-
rections.

In FiST, we model a file system as a collection of
mounts, files, and user processes, all running under one
system. Severalmounts, mounted instances of file systems,
can exist at any time. A FiST-produced file system can
access and manipulate various mounts and files, data as-
sociated with them, their attributes, and the functions that
operate on them. Furthermore, the file system can access
attributes that correspond to the run-time execution envi-
ronment: the operating system and the user process cur-
rently executing.

Information (both data and control) generally flows be-
tween user processes and the mounted file system through
the system call interface. For example, file data flows
between user processes and the kernel via theread and
write system calls. Processes can pass specific file

system data using themount system call. In addition,
mounted file systems may return arbitrary (even new) er-
ror codes back to user processes.

Since a FiST-produced stackable file system is the caller
of other file systems, it has a lot of control over what tran-
spires between it and the ones below through the vnode
interface. FiST allows access to multiple mounts and files.
Each mount or file may have multiple attributes that FiST
can access. Also, FiST can determine how to apply vnode
functions on each file. For maximum flexibility, FiST
allows the developer full control over mounts and files,
their data, their attributes, and the functions that operate
on them; they may be created or removed, data and at-
tributes can be changed, and functions may be augmented,
replaced, reordered, or even ignored.

Ioctls (I/O Controls) have been used as an operating sys-
tem extension mechanism as they can exchange arbitrary
information between user processes and the kernel, as well
as in between file system layers, without changing inter-
faces. FiST allows developers to define new ioctls and de-
fine the actions to take when they are used; this can be used
to create application-specific file systems. FiST also pro-
vides functions for portable copying of ioctl data between
user and kernel spaces. For example, our encryption file
system (Section 4.1) uses an ioctl to set cipher keys.

Traditional stackable file systems create a single linear
stack of mounts, each one hiding the one file system below
it. More general stacking allows for a tree-like mount struc-
ture, as well as for direct access to any layer[8, 18]. This
interesting aspect of stackable file systems is called fan-
ning, as shown in Figure 4. Afan-outallows the mounted
file system to access two or more mounts below. A fan-
out is useful for example in replicated, load-balancing,
unifying[15], or caching file systems[22].

$1

$0 $0

$1 $2

X

Y Y Z

X

Fan-OutFan-In

Figure 4:Fanning in stackable file systems

A fan-in allows a process to access lower level mounts
directly. This can be useful when fast access to the lower
level data is needed. For example, in an encryption file sys-
tem, a backup utility can backup the data faster (and more
securely) by accessing the ciphertext files in the lower level
file system. If fan-in is not used, the mounted file system
will overlay the mounted directory with the mount point.
An overlay mount hides the lower level file system. This
can be useful for some security applications. For example,
our ACL file system (Section 4.2) hides certain important
files from normal view and is able to control who can ma-
nipulate those files and how.
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2.3 The FiST Language

The FiST language is a high-level language that uses file
system features common to several operating systems. It
provides file system specific language constructs for sim-
plifying file system development. In addition, FiST lan-
guage constructs can be used in conjunction with additional
C code to offer the full flexibility of a system programming
language familiar to file system developers. The ability to
integrate C and FiST code is reflected in the general struc-
ture of FiST input files. Figure 5 shows the four main sec-
tions of a FiST input file.

%f
1 C Declarations

%g
2 FiST Declarations

%%
3 FiST Rules

%%
4 Additional C Code

Figure 5:FiST Grammar Outline

The FiST grammar was modeled after yacc[9] input
files, because yacc is familiar to programmers and the pur-
pose for each of its four sections (delimited by “%%”)
matches with four different subdivisions of desired file sys-
tem code: raw included header declarations, declarations
that affect the produced code globally, actions to perform
when matching vnode operations, and additional code.

C Declarations (enclosed in “f% %g”) are used to in-
clude additional C headers, define macros or typedefs, list
forward function prototypes, etc. These declarations are
used throughout the rest of the code.

FiST Declarations define global file system properties
that affect the overall semantics of the produced code and
how a mounted file system will behave. These properties
are useful because they allow developers to make common
global changes in a simple manner. In this section we de-
clare if the file system will be read-only or not, whether or
not to include debugging code, if fan-in is allowed or not,
and what level (if any) of fan-out is used.

FiST Declarations can also define special data structures
used by the rest of the code for this file system. We can de-
fine mount-time data that can be passed with the mount(2)
system call. A versioning file system, for example, can be
passed a number indicating the maximum number of ver-
sions to allow per file. FiST can also define new error codes
that can be returned to user processes, for the latter to un-
derstand additional modes of failure. For example, an en-
cryption file system can return a new error code indicating
that the cipher key in use has expired.

FiST Rules define actions that generally determine the
behavior for individual files. A FiST rule is a piece of code
that executes for a selected set of vnode operations, for one

operation, or even a portion of a vnode operation. Rules
allow developers to control the behavior of one or more file
system functions in a portable manner. The FiST rules sec-
tion is the primary section, where most of the actions for the
produced code are written. In this section, for example, we
can choose to change the behavior ofunlink to rename
the target file, so it might be restored later. We separated
the declarations and rules sections for programming ease:
developers know that global declarations go in the former,
and actions that affect vnode operations go in the latter.

Additional C Code includes additional C functions that
might be referenced by code in the rest of the file system.
We separated this section from the rules section for code
modularity: FiST rules are actions to take for a given vnode
function, while the additional C code may contain arbitrary
code that could be called from anywhere. This section pro-
vides a flexible extension mechanism for FiST-based file
systems. Code in this section may use any basic FiST prim-
itives (discussed in Section 2.3.1) which are helpful in writ-
ing portable code. We also allow developers to write code
that takes advantage of system-specific features; this flexi-
bility, however, may result in non-portable code.

The remainder of this section introduces the FiST lan-
guage primitives, the various participants in a file system
(such as files, mounts, and processes), their attributes and
how to extend them and store them persistently, and how to
control the execution flow in a file system. The examples
in Section 4 are also helpful because they further illustrate
the FiST language.

2.3.1 FiST Syntax

FiST syntax allows referencing mounted file systems and
files, accessing attributes, and calling FiST functions.
Mount references begin with$vfs, while file references
use a shorter “$” syntax because we expect them to appear
more often in FiST code. References may be followed by
a name or number that distinguishes among multiple in-
stances (e.g.,$1, $2, etc.) especially useful when fan-out
is used (Figure 4). Attributes of mounts and files are speci-
fied by appending a dot and the attribute name to the refer-
ence (e.g.,$vfs.blocksize, $1.name, $2.owner,
etc.) The scope of these references is the current vnode
function in which they are executing.

There is only one instance of a running operating sys-
tem. Similarly, there is only one process context executing
that the file system has to be concerned with. Therefore
FiST need only refer to their attributes. These read-only at-
tributes are summarized in Table 2. The scope of all read-
only “%” attributes is global.

FiST code can call FiST functions from anywhere in the
file system, some of which are shown in Table 3. The scope
of FiST functions is global in the mounted file system.
These functions form a comprehensive library of portable
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Global Meaning
%blocksize native disk block size
%gid effective group ID
%pagesize native page size
%pid process ID
%time current time (seconds since epoch)
%uid effective user ID

Table 2: Global Read-Only FiST Variables

routines useful in writing file systems. The names of these
functions begin with “fist.” FiST functions can take a vari-
able number of arguments, omit some arguments where
suitable defaults exist, and use different types for each ar-
gument. These are true functions that can be nested and
may return any single value.

Function Meaning
fistPrintf print messages
fistStrEq string comparison
fistMemCpy buffer copying similar
fistLastErr get the last error code
fistSetErr set the return error code
fistReturnErr return an error code immediately
fistSetIoctlData set ioctl value to pass to a user process
fistGetIoctlData get ioctl value from a user process
fistSetFileData write arbitrary data to a file
fistGetFileData read arbitrary data from a file
fistLookup find a file in a directory
fistReaddir read a directory
fistSkipName hide a name of a file in a directory
fistOp execute an arbitrary vnode operation

Table 3: A sample of FiST functions used in this paper

Each mount and file has attributes associated with it.
FiST recognizes common attributes of mounted file sys-
tems and files that are defined by the system, such as the
name, owner, last modification time, or protection modes.
FiST also allows developers to define new attributes and
optionally store them persistently. Attributes are accessed
by appending the name of the attribute to the mount or file
reference, with a single dot in between, much the same way
that C dereferences structure field names. For example, the
native block size of a mounted file system is accessed as
$vfs.blocksize and the name of a file is$0.name.

FiST allows users to create new file attributes. For ex-
ample, an ACL file system may wish to add timed access
to certain files. The following FiST Declaration can define
the new file attributes in such a file system:

per_vnode f
int user; /* extra user */
int group; /* extra group */
time_t expire; /* access expiration time */g;

With the above definition in place, a FiST file system
may refer to the additional user and group who are allowed

to access the file as$0.user and$0.group, respec-
tively. The expiration time is accessed as$0.expire.

Theper vnode declaration defines new attributes for
files, but those attributes are only kept in memory. FiST
also provides different methods to define, store, and access
additional attributes persistently. This way, a file system
developer has the flexibility of deciding if new attributes
need only remain in memory or saved more permanently.

For example, an encrypting file system may want to store
an encryption key, cipher ID, and Initialization Vector (IV)
for each file. This can be declared in FiST using:

fileformat SECDAT f
char key[16]; /* cipher key */
int cipher; /* cipher ID */
char iv[16]; /* initialization vector */g;

Two FiST functions exist for handling file formats: fist-
SetFileData and fistGetFileData. These two routines can
store persistently and retrieve (respectively) additional file
system and file attributes, as well as any other arbitrary
data. For example, to save the cipher ID in a file called
.key, use:

int cid;
/* set cipher ID */
fistSetFileData(".key", SECDAT, cipher, cid);

The above FiST function will produce kernel code to
open the file named “.key” and write the value of the
“cid” variable into the “cipher” field of the “SECDAT” file
format, as if the latter had been a data structure stored in
the “.key” file.

Finally, the mechanism for adding new attributes to
mounts is similar. For files, the declaration isper vnode
while for mounts it isper vfs. The routines fistSetFile-
Data and fistGetFileData can be used to access any arbi-
trary persistent data, for both mounts and files.

2.3.2 Rules for Controlling Execution and Informa-
tion Flow

In the previous sections we considered how FiST can con-
trol the flow of information between the various layers. In
this section we describe how FiST can control the execu-
tion flow of various operations using FiST rules.

FiST does not change the interfaces that call it, because
such changes will not be portable across operating systems
and may require changing many user applications. FiST
therefore only exchanges information with applications us-
ing existing APIs (e.g., ioctls) and those specific applica-
tions can then affect change.

The most control FiST file systems have is over the file
system (vnode) operations that execute in a normal stack-
able setting. Figure 6 highlights what a typical stackable
vnode operation does: (1) find the vnode of the lower level
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mount, and (2) repeat the same operation on the lower
vnode.

int fsname_getattr(vnode_t *vp, args...)f
int error;
vnode_t *lower_vp = get_lower(vp);

/* (1) pre-call code goes here */
/* (2) call same operation on lower file system */
error = VOP_GETATTR(lower_vp, args...);
/* (3) post-call code goes here */
return error;g

Figure 6:A skeleton of typical kernel C code for stackable vnode
functions. FiST can control all three sections of every vnode func-
tion: pre-call, post-call, and the call itself.

The example vnode function receives a pointer to the
vnode on which to apply the operation, and other argu-
ments. First, the function finds the corresponding vnode at
the lower level mount. Next, the function actually calls the
lower level mounted file system through a standardVOP *
macro that applies the same operation, but on the file sys-
tem corresponding to the type of the lower vnode. The
macro uses the lower level vnode, and the rest of the argu-
ments unchanged. Finally, the function returns to the caller
the status code which the lower level mount passed to the
function.

There are three key parts in any stackable function that
FiST can control: the code that may run before calling
the lower level mount (pre-call), the code that may run af-
terwards (post-call), and the actual call to the lower level
mount. FiST can insert arbitrary code in the pre-call and
post-call sections, as well as replace the call part itself with
anything else.

By default, the pre-call and post-call sections are empty,
and the call section contains code to pass the operation to
the lower level file system. These defaults produce a file
system that stacks on another but does not change behav-
ior, and that was designed so developers do not have to
worry about the basic stacking behavior—only about their
changes.

For example, a useful pre-call code in an encryption file
system would be to verify the validity of cipher keys. A
replication file system may insert post-call code to repeat
the same vnode operation on other replicas. A versioning
file system could replace the actual call to remove a file
with a call to rename it; an example FiST code for the latter
might be:

%op:unlink:call f
fistRename($name, fistStrAdd($name, ".unrm"));g

The general form for a FiST rule is:%allset : optype : part fodeg (1)

Table 4 summarizes the possible values that a FiST rule
can have.Callsetdefines a collection of operations to op-
erate on.Optypefurther defines the call set to a subset of
operations or a single operation.Part defines the part of the
call that the following code refers to: pre-call, call, post-
call, or the name of a newly defined ioctl. Finally,code
contains any C code enclosed in braces.

Call Sets
op to refer to a single operation
ops to refer to all operations
readops to refer to non state changing operations
writeops to refer to state changing operations

Operation Types
all all operations
data operations that manipulate file data
name operations that manipulate file names
The rest of the operation types specify one of the
following vnode operations: create, getattr, l/stat,
link, lookup, mkdir, read, readdir, readlink, rename,
rmdir, setattr, statfs, symlink, unlink, and write.

Call Part
precall part before calling the lower file system
call the actual call to the lower file system
postcall part after calling the lower file system
ioctl name of a newly defined ioctl

Table 4:Possible Values in FiST Rules

2.3.3 Filter Declarations and Filter Functions

FiST file systems can perform arbitrary manipulations of
the data they exchange between layers. The most useful
and at the same time most complex data manipulations in
a stackable file system involve file data and file names. To
manipulate them consistently without FiST or Wrapfs, de-
velopers must make careful changes in many places. For
example, file data is manipulated in read, write, and all
of the MMAP functions; file names also appear in many
places: lookup, create, unlink, readdir, mkdir, etc.

FiST simplifies the task of manipulating file data or file
names using two types offilters. A filter is a function like
Unix shell filters such as sed or sort: they take some input,
and produce possibly modified output.

If developers declarefilter:data in their FiST file,
fistgen looks for two data coding functions in the Addi-
tional C Code section of the FiST File:encode data and
decode data. These functions take an input data page,
and an allocated output page of the same size. Develop-
ers are expected to implement these coding functions in the
Additional C Code section of the FiST file. The two func-
tions must fill in the output page by encoding or decoding
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it appropriately and return a success or failure status code.
Our encryption file system uses a data filter to encrypt and
decrypt data (Section 4.1).

With the FiST declarationfilter:name, fistgen in-
serts code and calls to encode or decode strings repre-
senting file names. The file name coding functions (en-
code name anddecode name) take an input file name
string and its length. They must allocate a new string and
encode or decode the file name appropriately. Finally, the
coding functions return the number of bytes in the newly
allocated string, or a negative error code. Fistgen inserts
code at the caller’s level to free the memory allocated by
file name coding functions.

Using FiST filters, developers can easily produce file
systems that perform complex manipulations of data or
names exchanged between file system layers.

2.4 Fistgen

Fistgen is the FiST language code generator. Fistgen reads
in an input FiST file, and using the right Basefs templates,
produces all the files necessary to build a new file system
described in the FiST input file. These output files include
C file system source files, headers, sources for user level
utilities, and a Makefile to compile them on the given plat-
form.

Fistgen implements a subset of the C language parser
and a subset of the C preprocessor. It handles conditional
macros (such as #ifdef and #endif). It recognizes the begin-
ning of functions after the first set of declarations and the
ending of functions. It parses FiST tags inserted in Basefs
(explained in the next section) used to mark special places
in the templates. Finally, fistgen handles FiST variables
(beginning with $ or %) and FiST functions (such as fist-
Lookup) and their arguments.

After parsing an input file, fistgen builds internal data
structures and symbol tables for all the keywords it must
handle. Fistgen then reads the templates, and generates
output files for each file in the template directory. For
each such file, fistgen inserts needed code, excludes unused
code, or replaces existing code. In particular, fistgen con-
ditionally includes large portions of code that support FiST
filters: code to manipulate file data or file names. It also
produces several new files (including comments) useful in
the compilation for the new file system: a header file for
common definitions, and two source files containing auxil-
iary code.

The code generated by fistgen may contain automatically
generated functions that are necessary to support proper
FiST function semantics. Each FiST function is replaced
with one true C function—not a macro, inlined code, a
block of code statements, or any feature that may not be
portable across operating systems and compilers. While it
might have been possible to use other mechanisms such as

C macros to handle some of the FiST language, it would
have resulted in unmaintainable and unreadable code. One
of the advantages of the FiST system is that it produces
highly readable code. Developers can even edit that code
and add more features by hand, if they so choose.

Fistgen also produces real C functions for specialized
FiST syntax that cannot be trivially handled in C. For exam-
ple, the fistGetIoctlData function takes arguments that rep-
resent names of data structures and names of fields within.
A C function cannot pass such arguments; C++ templates
would be needed, but we opted against C++ to avoid requir-
ing developers to know another language, because modern
Unix kernels are still written in C, and to avoid interoper-
ability problems between C++ produced code and C pro-
duced code in a running kernel. Preprocessor macros can
handle data structure names and names of fields, but they
do not have exact or portable C function semantics. To
solve this problem, fistgen replaces calls to functions such
as fistGetIoctlData with automatically generated specially
named C functions that hard-code the names of the data
structures and fields to manipulate. Fistgen generates these
functions only if needed and only once.

2.5 Basefs

Basefs is a template system which was derived from
Wrapfs[27]. It provides basic stacking functionality with-
out changing other file systems or the kernel. To achieve
this functionality, the kernel must support three features.
First, in each of the VFS data structures, Basefs requires a
field to store pointers to data structures at the layer below.
Second, new file systems should be able to call VFS func-
tions. Third, the kernel should export all symbols that may
be needed by new loadable kernel modules. The last two
requirements are needed only for loadable kernel modules.

BASEFS

EXT2FS

Generic

Specific

Generic

Specific

VFS

Figure 7:Where Basefs fits inside the kernel

Basefs handles many of the internal details of operating
systems, thus freeing developers from dealing with kernel
specifics. Basefs provides a stacking layer that is indepen-
dent from the layers above and below it. Figure 7 shows
this. Basefs appears to the upper VFS as a lower level file
system. Basefs also appears to file systems below it as a
VFS. All the while, Basefs repeats the same vnode opera-
tion on the lower level file system.

Basefs performs all data reading and writing on whole
pages. This simplifies mixing regular reads and writes with
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memory-mapped operations, and gives developers a single
paged-based interface to work with. Currently, file systems
derived from Basefs manipulate data in whole pages and
may not change the data size (e.g., compression).

To improve performance, Basefs copies and caches data
pages in its layer and the layers below it.1 Basefs saves
memory by caching at the lower layer only if file data is
manipulated and fan-in was used; these are the usual con-
ditions that require caching at each layer.

Basefs is different from Wrapfs in four ways. First,
substantial portions of code to manipulate file data and
file names, as well as debugging code are not included in
Basefs by default. These are included only if the file sys-
tem needs them. By including only code that is necessary
we generate output code that is more readable than code
with multi-nested#ifdef/#endif pairs. Conditionally
including this code also resulted in improved performance,
as reported in Section 5.3. Matching or exceeding the per-
formance of other layered file systems was one of the de-
sign goals for Basefs.

Second, Basefs adds support for fan-out file systems na-
tively. This code is also conditionally included, because it
is more complex than single-stack file systems, adds more
performance overhead, and consumes more memory. A
complete discussion of the implementation and behavior of
fan-out file systems is beyond the scope of this paper.

Third, Basefs includes (conditionally compiled) support
for many other features that had to be written by hand in
Wrapfs. This added support can be thought of as a li-
brary of common functions: opening, reading or writing,
and then closing arbitrary files; storing extended attributes
persistently; user-level utilities to mount and unmount file
systems, as well as manipulate ioctls; inspecting and mod-
ifying file attributes, and more.

Fourth, Basefs includes specialtagsthat help fistgen lo-
cate the proper places to insert certain code. Inserting
code at the beginning or the end of functions is simple,
but in some cases the code to add has to go elsewhere.
For example, handling newly defined ioctls is done (in
the basefs ioctl vnode function) at the end of a C
“switch” statement, right before the “default:” case.

3 Implementation

We implemented the FiST system in Solaris, Linux, and
FreeBSD because these three operating systems span the
most popular modern Unix platforms and they are suffi-
ciently different from each other. This forced us to un-
derstand the generic problems in addition to the system-
specific problems. Also, we had access to kernel sources
for all three platforms, which proved valuable during the

1Heidemann proposed a solution to the cache coherency problem
through a centralized cache manager[6]. His solution, however, required
modifications to existing file systems and the rest of the kernel.

development of our templates. Finally, all three platforms
support loadable kernel modules, which sped up the devel-
opment and debugging process. Loadable kernel modules
are a convenience in implementing FiST; they are not re-
quired.

The implementation of Basefs was simple and improved
on previously reported efforts[27]. No changes were re-
quired to either Solaris or FreeBSD. No changes to Linux
were required if using statically linked modules. To use dy-
namically loadable kernel modules under Linux, only three
lines of code were changed in a header file. This change
was passive and did not have any impact on the Linux ker-
nel.

The remainder of this section describes the implementa-
tion of fistgen. Fistgen translates FiST code into C code
which implements the file system described in the FiST in-
put file. The code can be compiled as a dynamically load-
able kernel module or statically linked with a kernel. In this
section we describe the implementation of key features of
FiST that span its full range of capabilities.

We implemented read-only execution environment vari-
ables (Section 2.3.1) such as%uid by looking for them
in one of the fields fromstruct cred in Solaris or
struct ucred in FreeBSD. The VFS passes these
structures to vnode functions. The Linux VFS simpli-
fies access to credentials by reading that information from
the disk inode and into the in-memory vnode structure,
struct inode. So on Linux we find UID and other cre-
dentials by referencing a field directly in the inode which
the VFS passes to us.

Most of the vnode attributes listed Section 2.3.1 are sim-
ple to find. On Linux they are part of the main vnode struc-
ture. On Solaris and FreeBSD, however, we first perform a
VOP GETATTR vnode operation to find them, and then re-
turn the appropriate field from the structure that the getattr
function fills.

The vnode attribute “name” was more complex to imple-
ment, because most kernels do not store file names after the
initial name lookup routine translates the name to a vnode.
On Linux, implementing the vnode name attribute was sim-
ple, because it is part of a standard directory entry structure,
dentry. On Solaris and FreeBSD, however, we add code
to the lookup vnode function that stores the initial file name
in the private data of the vnode. That way we can access
it as any other vnode attribute, or any other per-vnode at-
tribute added using theper vnode declaration. We im-
plemented all other fields defined using theper vfs FiST
declaration in a similar fashion.

The FiST declarations described in Section 2.3 affect the
overall behavior of the generated file system. We imple-
mented the read-only access mode by replacing the call part
of every file system function that modifies state (such as
unlink and mkdir) to return the error code “read-only file
system.” We implemented the fan-in mount style by ex-
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cluding code that uses the mounted directory’s vnode also
as the mount point.

The only difficult part of implementing theioctl dec-
laration and its associated functions, fistGetIoctlData and
fistSetIoctlData (Section 2.2), was finding how to copy
data between user space and kernel space. Solaris and
FreeBSD use the routines copyin and copyout; Linux 2.3
usescopy from user andcopy to user.

The last complex feature we implemented was the
fileformat FiST declaration and the functions used
with it: fistGetFileData and fistSetFileData (Section 2.3.1).
Consider this small code excerpt:

fileformat fmt f data structure;g
fistGetFileData( file, fmt, field, out);

First, we generate a C data structure namedfmt. To im-
plement fistGetFileData, we openfile, read as many bytes
from it as the size of the data structure, map these bytes
onto a temporary variable of the same data structure type,
copy the desiredfield within that data structure intoout,
close the file, and finally return a error/success status value
from the function. To improve performance, if fileformat
related functions are called several times inside a vnode
function, we keep the file they refer to open until the last
call that uses it.

Fistgen itself (excluding the templates) is highly
portable, and can be compiled on any Unix system. The
total number of source lines for fistgen is 4813. Fistgen can
process each 1KB of template data in under 0.25 seconds
(measured on the same platform used in Section 5.3).

4 Examples

This section describes the design and implementation of
several sample file systems we wrote using FiST. The ex-
amples generally progress from those with a simple FiST
design to those with a more complex design. Each example
introduces a few more FiST features.

1. Cryptfs: is an encryption file system.

2. Aclfs: adds simple access control lists.

3. Unionfs: joins the contents of two file systems.

These examples are experimental and intended to illus-
trate the kinds of file systems that can be written using
FiST. We illustrate and discuss only the more important
parts of these examples—those that depict key features of
FiST. Whenever possible, we mention potential enhance-
ments to our examples. We hope to convince readers of the
flexibility and simplicity of writing new file systems using
FiST. An additional example, Snoopfs, was described in
Section 2.1.

4.1 Cryptfs

Cryptfs is a strong encryption file system. It uses the
Blowfish[21] encryption algorithm in Cipher Feedback
(CFB) mode[20]. We used one fixed Initialization Vector
(IV) and one 128-bit key per mounted instance of Cryptfs.
Cryptfs encrypts both file data and file names. After en-
crypting file names, Cryptfs also uuencodes them to avoid
characters that are illegal in file names. Additional design
and important details are available elsewhere[26].

The FiST implementation of Cryptfs shows three addi-
tional features: file data encoding, using ioctl calls, and
using per-VFS data. Cryptfs’s FiST code uses all four sec-
tions of a FiST file. Some of the more important code for
Cryptfs is:

%f
#include <blowfish.h>
%g
filter:data;
filter:name;
ioctl:fromuser SETKEY fchar ukey[16];g;
per_vfs fchar key[16];g;
%%
%op:ioctl:SETKEY f

char temp_buf[16];
if (fistGetIoctlData(SETKEY, ukey, temp_buf)<0)
fistSetErr(EFAULT);

else
BF_set_key(&$vfs.key, 16, temp_buf);g

%%
unsigned char global_iv[8] = f

0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 g;
int cryptfs_encode_data(const page_t *in,

page_t *out)f
int n = 0; /* blowfish variables */
unsigned char iv[8];

fistMemCpy(iv, global_iv, 8);
BF_cfb64_encrypt(in, out, %pagesize,

&($vfs.key), iv, &n,
BF_ENCRYPT);

return %pagesize;g
...

The above example omits the call to decode data and
the calls to encode and decode file names because they are
similar in behavior to data encoding. Cryptfs defines an
ioctl named SETKEY, used to set 128-bit encryption keys.
We wrote a simple user-level tool which prompts the user
for a passphrase and sends an MD5-hash of it to the kernel
using this ioctl. When the SETKEY ioctl is called, Cryptfs
stores the (cipher) key in the private VFS data field “key”,
to be used later.

There are several possible extensions to Cryptfs: storing
per-file or per-directory keys in auxiliary files that would
otherwise remain hidden from users’ view, much the same
as Aclfs does (Section 4.2.); using several types of encryp-
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tion algorithms, and defining mount flags to select among
them.

4.2 Aclfs

Aclfs allows an additional UID and GID to share access to
a directory as if they were the owner and group of that di-
rectory. Aclfs shows three additional features of FiST: dis-
allowing fan-in (more secure), using special purpose aux-
iliary files, and hiding files from users’ view. The FiST
code for Aclfs uses the FiST Declarations and FiST Rules
sections:

fanin no;
ioctl:fromuser SETACL fint u; int g;g;
fileformat ACLDATA fint us; int gr;g;
%%
%op:ioctl:SETACL f

if ($0.owner == %uid) f
int u2, g2;
if (fistGetIoctlData(SETACL, u, &u2) < 0 ||

fistGetIoctlData(SETACL, g, &g2) < 0)
fistSetErr(EFAULT);

else f
fistSetFileData(".acl", ACLDATA, us, u2);
fistSetFileData(".acl", ACLDATA, gr, g2);gg else

fistSetErr(EPERM);g
%op:lookup:postcall f

int u2, g2;
if (fistLastErr() == EPERM

&&
fistGetFileData(".acl", ACLDATA, us, u2)>=0
&&
fistGetFileData(".acl", ACLDATA, gr, g2)>=0
&&
(%uid == u2 || %gid == g2))

fistLookup($dir:1, $name, $1,
$dir:1.owner, $dir:1.group);g

%op:lookup:precall f
if (fistStrEq($name, ".acl") &&

$dir.owner != %uid)
fistReturnErr(ENOENT);g

%op:readdir:call f
if (fistStrEq($name, ".acl"))
fistSkipName($name);g

When looking up a file in a directory, Aclfs first performs
the normal access checks (inlookup). We insert postcall
code after the normal lookup that checks if access to the
file was denied and if an additional file named.acl exists
in that directory. We then read one UID and GID from
the.acl file. If the effective UID and GID of the current
process match those listed in the.acl file, we repeat the
lookup operation on the originally looked-up file, but using
the ownership and group credentials of theactualowner of
the directory. We must use the owner’s credentials, or the
lower file system will deny our request.

The.acl file itself is modifiable only by the directory’s
owner. We accomplish this by using a special ioctl. Fi-
nally, we hide.acl files from anyone but their owner. We
insert code in the beginning of lookup that returns the error
“no such file” if anyone other than the directory’s owner
attempted to lookup the ACL file. To complete the hiding
of ACL files, we skip listing.acl files when reading di-
rectories.

Aclfs shows the full set of arguments to the fistLookup
routine. In order, the five arguments are: the directory to
lookup in, the name to lookup, the vnode to store the newly
looked up entry, and the credentials to perform the lookup
with (UID and GID, respectively).

There are several possible extensions to this implemen-
tation of Aclfs. Instead of using the UID and GID listed
in the.acl file, it can contain an arbitrarily long list of
user and group IDs to allow access to. The.acl file may
also include sets of permissions to deny access from, per-
haps using negative integers to distinguish them from ac-
cess permissions. The granularity of Aclfs can be made on
a per-file basis; for each fileF , access permissions can be
read from a file.F.acl, if one exists.

4.3 Unionfs

Unionfs joins the contents of two file systems similar to
the union mounts in BSD-4.4[15] and Plan 9[17]. The
two lower file systems can be considered two branches of a
stackable file system tree. Unionfs shows how to merge the
contents of directories in FiST, and how to define behav-
ior on a set of file system operations. The FiST code for
Unionfs uses the FiST Declarations and FiST Rules sec-
tions:

fanout 2;
%%
%op:lookup:postcall f

if (fistLastErr() == ENOENT)
fistSetErr(fistLookup($dir:2, $name));g

%op:readdir:postcall f
fistSetErr(fistReaddir($dir:2, NODUPS));g

%delops:all:postcall f
fistSetErr(fistOp($2));g

%writeops:all:call f
fistSetErr(fistOp($1));g
Normal lookup will try the first lower file system branch

($1). We add code to lookup in the second branch ($2)
if the first lookup did not find the file. If a file exists in
both lower file systems, Unionfs will use the one from the
first branch. Normal directory reading is augmented to in-
clude the contents of the second branch, but setting a flag to
eliminate duplicates; that way files that exist in both lower
file systems are listed only once. Since files may exist in
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both branches, they must be removed (unlink, rmdir, and
rename) from all branches. Finally we declare that all writ-
ing operations should perform their respective operations
only on the first branch; this means that new files are cre-
ated in the first branch where they will be found first by
subsequent lookups.

There are several other issues file system semantics and
especially concerning error propagation and partial fail-
ures, but these are beyond the scope of this paper. Exten-
sions to our Unionfs include larger fan-outs, masking the
existence of a file in $2 if it was removed from $1, and
ioctls or mount options to decide the order of lookups and
writing operations on the individual file system branches.

5 Evaluation

We evaluate the effectiveness of FiST using three criteria:
code size, development time, and performance. We show
how code size is reduced dramatically when using FiST,
and the corresponding improvements in development and
porting times. We also show that performance overhead is
small and comparable to other stacking work. We report
results based on the four example file systems described in
this paper: Snoopfs, Cryptfs, Aclfs, and Unionfs. These
were tested on three different platforms: Linux 2.3, Solaris
2.6, and FreeBSD 3.3.

5.1 Code Size

Code size is one measure of the development effort neces-
sary for a file system. To demonstrate the savings in code
size achieved using FiST, we compare the number of lines
of code that need to be written to implement the four exam-
ple file systems in FiST versus three other implementation
approaches: writing C code using a stand-alone version of
Basefs, writing C code using Wrapfs, and writing the file
systems from scratch as kernel modules using C. In partic-
ular, we first wrote all four of the example file systems from
scratch before writing them using FiST. For these example
file systems, the C code generated from FiST was identical
in size (modulo white-spaces and comments) to the hand-
written code. We chose to include results for both Basefs
and Wrapfs because the latter was released last year, and
includes code that makes writing some file systems easier
with Wrapfs than Basefs directly.

When counting lines of code, we excluded comments,
empty lines, and %% separators. For Cryptfs we excluded
627 lines of C code of the Blowfish encryption algorithm,
since we did not write it. When counting lines of code for
implementing the example file systems using the Basefs
and Wrapfs stackable templates, we exclude code that is
part of the templates and only count code that is specific to
the given example file system. We then averaged the code

sizes for the three platforms we implemented the file sys-
tems on: Linux 2.3, Solaris 2.6, and FreeBSD 3.3. These
results are shown in Figure 8. For reference, we include the
code sizes of Basefs and Wrapfs and also show the number
of lines of code required to implement Wrapfs in FiST and
Basefs.
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Figure 8:Average code size for various file systems when written
in FiST, written given the Basefs or Wrapfs templates, and written
from scratch in C.

Figure 8 shows large reductions in code size when
comparing FiST versus code hand-written from scratch—
generally writing tens of lines instead of thousands. We
also include results for the two templates. Size reductions
for the four example file systems range from a factor of 40
to 691, with an average of 255. We focus though on the
comparison of FiST versus stackable template systems. As
Wrapfs represents the most conservative comparison, the
figure shows for each file system the additional number of
lines of code written using Wrapfs. The smallest average
code size reduction in using FiST versus Wrapfs or Basefs
across all four file systems ranges from a factor of 1.3 to
31.1; the average reduction rate is 10.5.

Figure 8 suggests two size reduction classes. First, mod-
erate (5–6 times) savings are achieved for Snoopfs, Cryptfs,
and Aclfs. The reason for this is that some lines of FiST
code for these file systems produce ten or more lines of C
code, while others result in almost a one-to-one translation
in terms of number of lines.

Second, the largest savings appeared for Unionfs, a fac-
tor of 28–33 times. The reason for this is that fan-out file
systems produce C code that affects all vnode operations;
each vnode operation must handle more than one lower
vnode. This additional code was not part of the original
Wrapfs implementation, and it is not used unless fan-outs
of two or more are defined (to save memory and improve
performance). If we exclude the code to handle fan-outs,
Unionfs’s added C code is still over 100 lines producing
savings of a factor of 7–10. FreeBSD’s Unionfs is 4863
lines long, which is 50% larger than our Unionfs (3232
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lines). FreeBSD’s Unionfs is 2221 lines longer than their
Nullfs, while ours is only 481 lines longer than our Basefs.2

Figure 8 shows the code sizes foreachplatform. The
savings gained by FiST are multiplied with each port. If
we sum up the savings for the above three platforms, we
reach reduction factors ranging from 4 to over 100 times
when comparing FiST to code written using the templates.
This aggregated reduction factor exceeds 750 times when
comparing FiST to C code written from scratch. The more
ports of Basefs exist, the better these cumulative savings
would be.

5.2 Development Time

Estimating the time to develop kernel software is very dif-
ficult. Developers’ experience can affect this time signifi-
cantly, and this time is generally reduced with each port.
In this section we report our own personal experiences
given these file system examples and the three platforms
we worked with; these figures do not represent a controlled
study. Figure 9 shows the number of days we spent devel-
oping various file systems and porting them to three differ-
ent platforms.
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Figure 9:Average estimated reduction in development time

We estimated the incremental time spent designing, de-
veloping, and debugging each file system, assuming 8 hour
work days, and using our source commit logs and change
logs. We estimated the time it took us to develop Wrapfs,
Basefs, and the example file systems. Then we measured
the time it took us to develop each of these file systems
using the FiST language.

For most file systems, incremental time savings are a fac-
tor of 5–15 because hand writing C code for each platform
can be time consuming, while FiST provides this as part
of the base templates and the additional library code that
comes with Basefs. For Cryptfs, however, there are no time
savings per platform, because the vast majority of the code
for Cryptfs is in implementing the four encoding and de-
coding functions, which are implemented in C code in the

2Unfortunately, the stacking infrastructure in FreeBSD is currently
broken, so we were unable to compare the performance of our stacking
to FreeBSD’s.

Additional C Code section of the FiST file; the rest of the
support for Cryptfs is already in Wrapfs.

The average per platform reduction in development time
across the four file systems is a factor of seven in using
FiST versus the Wrapfs templates. If we assume that de-
velopment time correlates directly to productivity, we can
corroborate our results with Brooks’s report that high-level
languages are responsible for at least a factor of five in im-
proved productivity[3].

An additional metric of productivity is comparing the
number of lines of C code developed for each man-day,
given the templates. The average number of lines of code
we wrote per man-day was 80. One user of our Wrapfs tem-
plates had used them to create a new migration file system
called mfs3. The average number of lines of code he wrote
per man-day was 68. The difference between his rate of
productivity and ours is only 20%, which can be explained
because we are more experienced in writing file systems
than he is.

The most obvious savings in development time come
when taking into account multiple platforms. Then it is
clearer that each additional platform increases the savings
factor of FiST versus other methods by one more.

5.3 Performance

To evaluate the performance of file systems written using
FiST, we tested each of the example file systems by mount-
ing it on top of a disk based native file system and run-
ning benchmarks in the mounted file system. We conducted
measurements for Linux 2.3, Solaris 2.6, and FreeBSD 3.3.
The native file systems used were EXT2, UFS, and FFS,
respectively. We measured the performance of our file sys-
tems by building a large package: am-utils-6.0, which con-
tains about 50,000 lines of C code in several dozen small
files and builds eight binaries; the build process contains
a large number of reads, writes, and file lookups, as well
as a fair mix of most other file system operations. Each
benchmark was run once to warm up the cache for exe-
cutables, libraries, and header files which areoutsidethe
tested file system; this result was discarded. Afterwards,
we took 10 new measurements and averaged them. In be-
tween each test, we unmounted the tested file system and
the one below it, and then remounted them; this ensured
that we started each test on a cold cache for that file sys-
tem. The standard deviations for our measurements were
less than 2% of the mean. We ran all tests on the same
machine: a P5/90, 64MB RAM, and a Quantum Fireball
4.35GB IDE hard disk.

Figure 10 shows the performance overhead of each file
system compared to the one it was based on. The intent of
these figures is two-fold: (1) to show that the basic stacking
overhead is small, and (2) to show the performance benefits

3http://www-internal.alphanet.ch/˜schaefer/mfs.html
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Figure 10:Performance overhead of various file systems for the
large compile benchmark, across three operating systems

of conditionally including code for manipulating file names
and file data in Basefs. Basefs+ refers to Basefs with code
for manipulating file names and file data.

The most important performance metric is the basic
overhead imposed by our templates. The overhead of
Basefs over the file systems it mounts on is just 0.8–2.1%.
This minimum overhead is below the 3–10% degradation
previously reported for null-layer stacking[8, 22]. In addi-
tion, the overhead of the example file systems due to new
file system functionality is greater than the basic stacking
overhead imposed by our templates in all cases, even for
very simple file systems. With regard to performance, de-
velopers who extend file system functionality using FiST
primarily need to be concerned with the performance cost
of new file system functionality as opposed to the cost of
the FiST stacking infrastructure. For instance, the overhead
of Cryptfs is the largest of all the file systems shown due to
the cost of the Blowfish cipher. Note that the performance
of individual file systems can vary greatly depending on the
operating system in question.

Figure 10 also shows the benefits of having FiST cus-
tomize the generated file system infrastructure based on
the file system functionality required. The comparison of
Basefs+ versus Basefs shows that the overhead of including
code for manipulating file names and file data is 4.2–4.9%
over Basefs. This added overhead is not incurred in Basefs
unless the file systems derived from it requires file data or
file name manipulations. While Cryptfs requires Basefs+
functionality, Snoopfs, Aclfs, and Unionfs do not. Com-
pared to a stackable file system such as Wrapfs, FiST’s
ability to conditionally include file system infrastructure
code saves an additional 4% of performance overhead for
Snoopfs, Aclfs, and Unionfs.

We also performed several micro-benchmarks which in-
cluded a series of recursive copies (cp –r), recursive re-

movals (rm –rf), recursive find, and “find-grep” (find /mnt
–print| xargs greppattern) using the same file set used for
the large compile. The focus of this paper is not on perfor-
mance, but on savings in code size and development time.
Since the micro-benchmarks confirmed our previous good
results, we do not repeat them here[27].

Finally, since we did not change the VFS, and all of our
stacking work is in the templates, there is no overhead on
the rest of the system; performance of native file systems
(NFS, FFS, etc.) is unaffected when our stacking is not
used.

6 Related Work

Rosenthal first implemented stacking in SunOS 4.1 in the
early 1990s[19]. A few other projects followed his, in-
cluding further prototypes for extensible file systems in
SunOS[22], and the Ficus layered file system[5, 7]. Web-
ber implemented file system interface extensions that allow
user-level file servers[25]. Unfortunately, these implemen-
tations required modifications to either existing file systems
or the rest of the kernel, limiting their portability signif-
icantly, and affecting the performance of native file sys-
tems. FiST achieves portability using a minimal stackable
base file system, Basefs, which can be ported to another
platform in 1–3 weeks. No changes need to be made to ex-
isting kernels or file systems, and there is no performance
penalty for native file systems.

Newer operating systems, such as the HURD[4],
Spring[13], and the Exokernel[10] have an extensible file
system interface. The HURD is a set of servers running un-
der the Mach 3.0 microkernel[1] that collectively provide
a Unix-like environment. HURD translators are programs
that can be attached to a pathname and perform specialized
services when that pathname is accessed. Writing transla-
tors entails implementing a well defined file access inter-
face and filling in stub operations for reading files, creating
directories, listing directory contents, etc.

Sun Microsystems Laboratories built Spring, an object-
oriented research operating system[13]. Spring was de-
signed as a set of cooperating servers on top of a microker-
nel. It provides generic modules that offer services useful
for a file system: caching, coherency, I/O, memory map-
ping, object naming, and security. Writing a file system
for Spring involves defining the operations to be applied
on the objects. Operations not defined are inherited from
their parent object. One work that resulted from Spring
is the Solaris MC (Multi-Computer) File System[12]. It
borrowed the object-oriented interfaces from Spring and
integrated them with the existing Solaris vnode interface
to provide a distributed file system infrastructure through
a specialProxy File System. Solaris MC provides all of
Spring’s benefits, while requiring little or no change to ex-
isting file systems; those can be ported gradually over time.
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Solaris MC was designed to perform well in a closely cou-
pled cluster environment (not a general network) and re-
quires high performance networks and nodes.

The Exokernel is an extensible operating system that
comes with XN, a low-level in-kernel stable storage
system[10]. XN allows users to describe the on-disk data
structures and the methods to implement them (along with
file system libraries called libFSes). The Exokernel re-
quires significant porting work to each new platform, but
then it can run many unmodified applications.

The main disadvantages of the HURD, Spring, and the
Exokernel are that they are not portable enough, not suf-
ficiently developed or stable, or they are not available for
general use. In comparison, FiST provides portable stack-
ing on widely available operating systems. Finally, none of
the related extensible file systems come with a high-level
language that developers can use to describe file systems.

High level languages have seldom been used to gener-
ate code for operating system components. FiST is the first
major language to describe a large component of the op-
erating system, the file system. Previous work in the area
of operating system component languages includes a lan-
guage to describe video device drivers[24].

7 Conclusions

The main contribution of this work is the FiST language
which can describe stackable file systems. This is a first
time a high-level language has been used to describe stack-
able file systems. From a single FiST description we gen-
erate code for different platforms. We achieved this porta-
bility because FiST uses an API that combines common
features from several vnode interfaces. FiST saves its de-
velopers from dealing with many kernel internals, and lets
developers concentrate on the core issues of the file system
they are developing. FiST reduces the learning curve in-
volved in writing file systems, by enabling non-experts to
write file systems more easily.

The most significant savings FiST offers is in reduced
development and porting time. The average time it took us
to develop a stackable file system using FiST was about
seven times faster than when we wrote the code using
Basefs. We showed how FiST descriptions are more con-
cise than hand-written C code: 5–8 times smaller for aver-
age stackable file systems, and as much as 33 times smaller
for more complex ones. FiST generates file system mod-
ules that run in the kernel, thus benefiting from increased
performance over user level file servers. The minimum
overhead imposed by our stacking infrastructure is 1–2%.

FiST can be ported to other Unix platforms in 1–3 weeks,
assuming the developers have access to kernel sources. The
benefits of FiST are multiplied each time it is ported to a
new platform: existing file systems described with FiST
can be used on the new platform without modification.

7.1 Future Work

We are developing support for file systems that change
sizes such as for compression. The main complexity with
supporting compression is that the file offsets at the upper
and lower layers are no longer identical, and some form of
efficient mapping is needed for operations such as append-
ing to a file or writing in the middle. This code complicates
the templates, but makes no change to the language.

We are also exploring layer collapsing in FiST: a method
to generate one file system that merges the functionality
from several FiST descriptions, thus saving the per-layer
stacking overheads.

We plan to port our system to Windows NT. NT has a
different file system interface than Unix’s vnode interface.
NT’s I/O subsystem defines its file system interface. NT
Filter Drivers are optional software modules that can be in-
serted above or below existing file systems[14]. Their task
is to intercept and possibly extend file system functionality.
One example of an NT filter driver is its virus signature de-
tector. It is possible to emulate file system stacking under
NT. We estimate that porting Basefs to NT will take 2–3
months, not 1–3 weeks as we predict for Unix ports.
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