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Benchmarking is critical when evaluating performance, but is especially difficult for file and
storage systems. Complex interactions between I/O devices, caches, kernel daemons, and other
OS components result in behavior that is rather difficult to analyze. Moreover, systems have
different features and optimizations, so no single benchmark is always suitable. The large variety
of workloads that these systems experience in the real world also add to this difficulty.

In this article we survey 415 file system and storage benchmarks from 106 recent papers. We
found that most popular benchmarks are flawed and many research papers do not provide a clear
indication of true performance. We provide guidelines that we hope will improve future perfor-
mance evaluations. To show how some widely-used benchmarks can conceal or over-emphasize
overheads, we conducted a set of experiments. As a specific example, slowing down read opera-
tions on ext2 by a factor of 32 resulted in only a 2-5% wall-clock slowdown in a popular compile
benchmark. Finally, we discuss future work to improve file system and storage benchmarking.

Categories and Subject Descriptors: D.4AGbgrating Systems): Performance-MeasurementsC.4 [Perfor-
mance of Systems]: Measurement Techniques and Performance Attributes

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Benchmarks, File Systems, Storage Systems

1. INTRODUCTION

Benchmarks are most often used to provide an idea of howdase piece of software or
hardware runs. The results can significantly add to, or defram, the value of a product
(be it monetary or otherwise). For example, they may be ugegbtential consumers in
purchasing decisions or by researchers to help determipsters’s worth.

When a performance evaluation of a system is presentedethdts and implications
must be clear to the reader. This includes accurate depgtib behavior under realistic
workloads and in worst-case scenarios, as well as explathia reasoning behind bench-
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marking methodologies. In addition, the reader should He &bverify the benchmark
results, and compare the performance of one system withoftetother. To accomplish
these goals, much thought must go into choosing suitablehmarks and configurations,
and accurate results must be conveyed.

Ideally, users could test performance in their own settngjag real workloads. This
transfers the responsibility of benchmarking from the auotio the user. However, this
is usually impractical because testing multiple systenisrie consuming, especially be-
cause exposing the system to real workloads implies legiminv to configure the system
properly, possibly migrating data and other settings torthwe systems, as well as dealing
with their respective bugs. In addition, many systems dmed for research purposes are
not released to the public. Although rare, we have seen padoce measured using ac-
tual workloads when they are created for in-house use [Ghatnet al. 2003] or are made
by a company to be deployed [Schmuck and Haskin 2002; Eislar 2007]. The next
best thing is for some party (usually the authors) to run Waa#ls that are representative
of real-world use on commodity hardware. These workloadsein the form of syn-
thetic benchmarks, executing real programs, or using sra€some activity. Simulating
workloads raises concerns about how accurately these brearkh portray the end-user’s
workload. Because of this, benchmarks must be well-undedsso as to not have un-
known side-effects, and should provide a good approximaifchow the program would
perform under different loads.

Benchmarking file and storage systems requires extra cdniehvexacerbates the situ-
ation. Even though these systems share the goal of provédiogss to data via a uniform
API, they differ in many ways, such as the type of underlyiregia (e.g., magnetic disk,
network storage, CD-ROM, volatile RAM, flash RAM, etc.), gterage environment (e.g.,
RAID, LVM, virtualization, etc.), the workloads that thestgm is optimized for, and their
features (e.g., journals, encryption, etc.).

In addition, complex interactions exist between file systehfO devices, specialized
caches (e.g, buffer cache, disk cache), kernel daemons kuigshd ), and other OS
components. Some operations may be performed asynchignang this activity is not
always captured in benchmark results. Because of this aitpl many factors must be
taken into account when performing benchmarks and anajyzisults.

In this article we concentrate on file and storage systemtaadks in the research
community. Specifically, we comment on how to choose andtereanchmarks, how to
run them, and how to analyze and report the results. We haveysd a selection of recent
file and storage system papers, and have found several ponohtmarking practices, as
well as some good practices. We classify the benchmarkstinde categories and discuss
them in turn:

Macro-benchmarksThe performance is tested against a particular workload itha
meant to represent some real-world workload.

Trace replays.A program replays operations which were recorded in a reahagdo,
with the hope that it is representative of real-world wodds.

Micro-benchmarksFew (typically one or two) operations are tested to isolaggrtspe-
cific overheads within the system.

The rest of this article is organized as follows. In Sectione2describe the criteria for
selecting publications for our survey and list the papersawalyze. Section 3 provides
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suggested guidelines to use when benchmarking and Sectitiscdsses how well the
surveyed papers have followed those suggestions. In ®€e6tiwe give an overview of

related research. We describe the system configurationemchimarking procedures that
were used in our experiments in Section 6.

Section 7 reviews the pros and cons of the macro-benchmhasksvere used in the
surveyed papers; we also include a few other notable bentdsrfar completeness. We
identified problems that can cause results to be inaccuragdeading, incomparable, or
unreproducible. Additionally, the workloads used for bemarking may have little to do
with workloads that the system will need to handle in the reailld. Readers should be
aware of the shortcomings so they can know how to interpeetélults correctly.

In Section 8 we examine how the papers that we surveyed useektand describe four
main problems that arise when using traces for performana#ysis. First, the methods
used to capture traces are not always specified and this feat hbw the results should
be interpreted. Second, the methods used to replay tracesatde accurate because
they generate workloads that are different from the tracerklwad. Third, the traces may
not be representative of the real-world environment thatésearcher is aiming to capture
if the trace is too short. Fourth, trace workloads are repaoilale only as long as other
researchers have access to the traces.

Section 9 describes the widely-available micro-benchmarkhe same way as we de-
scribe the macro-benchmarks. Since custom, or ad-hocorbenchmarks are of little
interest on their own, we show a selection of examples thatiate good and bad ways
to utilize these benchmarks. Micro-benchmarks are usefiddlate the performance of
parts of the system because the benchmarks do not have tbé ealthplications that arise
from exercising several operations at once. Although miachmarks provide the most
fine-grained information, they do not usually provide enoirgormation about the overall
performance of a system, and even the results from sevdfatetit micro-benchmarks
can leave a picture incomplete.

In Section 10 we discuss some of the more popular programis#magenerate work-
loads according to some specifications that the user prsvidféorkload generators are
generally less flexible than custom benchmarks, but thene iseed to create a program
from scratch, which would be a less reproducible solution.

Section 11 describes a suite of tools for benchmarking aatiom, which can save time
and avoid errors associated with repetitive tasks. Sedtibshows the benchmarks that
we performed. We describe the file system that we used to @btke tests and the ex-
periments themselves. The experiments show how benchroarkkide overheads. We
conclude in Section 13 and give a summary of suggestiondfmosing the proper bench-
mark, and offer our ideas for the future of file and storageesysbenchmarking.

2. SURVEYED PAPERS

Research papers have used A variety of benchmarks to arthlyperformance of file and
storage systems. This paper surveys the benchmarks antrbariing practices from a
selection of the following recent conferences:

—the Symposium on Operating Systems Principles (SOSP 2894, 2003, and 2005)

—the Symposium on Operating Systems Design and Implenment@SDI 2000, 2002,
2004, and 2006)
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—the USENIX Conference on File and Storage TechnologiesS{FA002, 2003, 2004,
2005, and 2007)

—the USENIX Annual Technical Conference (USENIX 1999, 202001, 2002, 2003,
2004, 2005, and 2006)

Research papers relating to file systems and storage offegaain the proceedings of
these conferences which are considered to be of high qudl#ydecided to consider only
full-length papers from conferences that have run for astiéise years. In addition, we
consider only file systems and storage papers that haveatgdltheir implementations
(no simulations), and from those, only benchmarks that aesl to measure performance
in terms of latency or throughput. For example, benchmasksiuo verify correctness or
report on the amount of disk space used were not includedietthat are similar to ours
were performed in the past [Small et al. 1997; Mogul 19994 a0 we believe that this
cross section of conference papers is adequate to make somagatjzations.

We surveyed 106 papers in total, eight of which are our owndLal. 2002; Zhang
et al. 2002; Memik et al. 2002; Lumb et al. 2002; Schmuck angki#a2002; Ng et al.
2002; Anderson et al. 2002; Sobti et al. 2002; Kim et al. 2G@2terson et al. 2002; Miller
et al. 2002; Schindler et al. 2002; Quinlan and Dorward 2@Qfjilera et al. 2003; Flinn
et al. 2003; Dimitrijevic et al. 2003; Lumb et al. 2003; Magstet al. 2003; Soules et al.
2003; Kallahalla et al. 2003; Rhea et al. 2003; Sivathanu. &083; Sarkar et al. 2003;
DeBergalis et al. 2003; Zhang and Ghose 2003; Thereska22@d., Radkov et al. 2004;
Muniswamy-Reddy et al. 2004; Schindler et al. 2004; Sivathet al. 2004; Tolia et al.
2004; Corbett et al. 2004; Aranya et al. 2004; Joglekar e2@D5; Joukov et al. 2005;
Sivathanu et al. 2005; Denehy et al. 2005; Schlosser et 8b;2@layannur et al. 2005;
Peterson et al. 2005; Abd-El-Malek et al. 2005; Wachs et@0.72 Veeraraghavan et al.
2007; Eisler et al. 2007; Peterson et al. 2007; Gulati et@0.72Weddle et al. 2007; Tian
et al. 2007; Wang and Merchant 2007; Yumerefendi and Cha8&; Z0ipar et al. 2007;
Gopal and Manber 1999; Gronvall et al. 1999; Wang et al. 1996 et al. 2000; Fu
et al. 2000; Anderson et al. 2000; Meter and Gao 2000; Struak 2000; Yu et al. 2000;
Adya et al. 2002; Muthitacharoen et al. 2002; Saito et al2200acCormick et al. 2004;
Nightingale and Flinn 2004; Sivathanu et al. 2004; Gniadsl €2004; Li et al. 2004; Weil
et al. 2006; Peek and Flinn 2006; Nightingale et al. 2006atBanu et al. 2006; Santry
et al. 1999; Mazieres et al. 1999; Muthitacharoen et al. 260dwstron and Druschel
2001; Dabek et al. 2001; Kaminsky et al. 2003; Ghemawat &(4l3; Arpaci-Dusseau
et al. 2003; Huang et al. 2005; Zhu et al. 2005; Prabhakarah. €005; Nightingale
et al. 2005; Zadok et al. 1999; Lee et al. 1999; Zadok and N@l02Seltzer et al. 2000;
Maziéres 2001; Huang and Chiueh 2001; Kroeger and Long;Z0ddok et al. 2001; Zhou
et al. 2001; Stein et al. 2001; Wang et al. 2002; Denehy et0@22Magoutis et al. 2002;
Padioleau and Ridoux 2003; Nugent et al. 2003; Wright et @032 Fraser and Chang
2003; Tolia et al. 2003; Papathanasiou and Scott 2004; Bkaloan et al. 2005; Tan et al.
2005; Muniswamy-Reddy et al. 2006; Shrira and Xu 2006].

3. SUGGESTED BENCHMARKING GUIDELINES

We now present a list of guidelines to consider when evalgdtie performance of a file
or storage system. A Web version summary of this documenbedound atvww.fsl.
cs.sunysb.edu/project-fsbench.html
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The two underlying themes are:

(1) Explainexactlywhat you did:
For example, if you decided to create your own benchmarkgries it in
detail. If you are replaying traces, describe where theyflanm, how they
were captured, and how you are replaying them (what tool?t wheed?).
This can help others understand and validate your results.

(2) Do not just saywhatyou did, but justifywhyyou did it that way:
For example, while it is important to note that you are usixiig @s a baseling
for your analysis, it is just as important (or perhaps ewesre important)
to discuss why it is a fair comparison. Similarly, it is udefior the reader
to knowwhy you ran that random-read benchmark so that they know what
conclusions to draw from the results.

3.1 Choosing The Benchmark Configurations

The first step of evaluating a system is to pose questionsiitiaeveal the performance
characteristics of the system, such as “how does my systenp&@ to current similar
systems?,” “how does my system behave under its expectddomdr?,” and “what are the
causes of my performance improvements or overheads?” @eese fjuestions are formu-
lated, one must decide on what baseline systems, systenggamations, and benchmarks
should be used to best answer them. This will produce a sé&tysfterm configuration
benchmarlk tuples that will need to be run. The researcher should havegtridea what
the results should be for each configuration at this pointtéf actual results differ from
these expectations, then the causes of the deviations mirstdstigated.

Since a system’s performance is generally more meanindfehwompared to the per-
formance of existing technology, one should find existingtems that provide fair and
interesting comparisons. For example, for benchmarkingramyption storage device, it
would be useful to compare the performance to other encatystierage devices, a tradi-
tional device, and perhaps some alternate implementafitses-space, file system, etc.).

The system under test may have several configurations thateeid to be evaluated in
turn. In addition, one may create artificial configuratiorfeane a component of the system
is removed to determine its overhead. For example, in aryption file or storage system,
you can use a null cipher (copy data only) rather than enctgpsolate the overhead of
encryption. Determining the cause of overheads may alsoobe dsing profiling tech-
nigues. Showing a breakdown of performance numbers helpg®fully understand a
system’s behavior and is generally a good practice.

There are three main types of benchmarks that one can chmoserhacro-benchmarks,
trace replaying, and micro-benchmarks.

Macro-benchmarksThese exercise multiple file system operations, and arellysua
good for an overall view of the system’s performance, thotighworkload may not be
realistic. These benchmarks are described further in Geati

Trace-basedReplaying traces can also provide an overall view of theesyst perfor-
mance. Traces are usually meant to exercise the system wéhrasentative real-world
workload, which can help to better understand how a systemadudeehave under normal
use. However, one must ensure that the trace is in fact repias/e of that workload
(for example, the trace should capture a large enough sanaid that the method used
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to replay the trace preserves the characteristics of th&lead. Section 8 provides more
information about trace-based benchmarking.

Micro-benchmarksThese exercise few (usually one or two) operations. Thesase-
ful if you are measuring a very small change, to better urtdadsthe results of a macro-
benchmark, to isolate the effects of specific parts of théesysor to show worst-case
behavior. In general, these benchmarks are only meaningfeh presented together with
other benchmarks. See Section 9 for more information.

We recommend using at least one macro-benchmark or tra¢eto & high-level view
of performance, along with several micro-benchmarks tdlggt more focused views.
In addition, there are several workload properties thatighbe considered. We describe
five important ones here. First, benchmarks may be charaeteby how CPU or I/O
bound they are. File and storage system benchmarks showddaily be 1/0-bound, but a
CPU-bound benchmark should also be run for systems thatiseghe CPU. Second, if
the benchmark records its own timings, it should use aceursasurements. Third, the
benchmark should be scalable, meaning that it exercisésraachine the same amount,
independent of hardware or software speed. Fourth, multiatded workloads may pro-
vide more realistic scenarios, and may help saturate thermsywith requests. Fifth, the
workloads should be well-understood. While the code of lsgtit benchmarks can be
read, and traces can be analyzed, it is more difficult to stded some application work-
loads. For example, compile benchmarks can behave vemreliffly depending on the
testbed’s architecture, installed software, and the warsf the software being compiled.
The source code for ad-hoc benchmarks should be publiahased, as it is the only truly
complete description of your benchmark that would alloneo$ito reproduce it (including
any bugs or unexpected behavior).

3.2 Choosing The Benchmarking Environment

The state of the system during the benchmark’s runs can héagea effect on results.
After determining an appropriate state, it should be cibatzurately and reported along
with the results. Some major factors that can affect resutscache state, ZCAV effects,
file system aging, and non-essential processes runninggitime benchmark.

The state of the system’s caches can affect the code-patharéhtested and thus af-
fect benchmark results. It is not always clear if benchmahauld be run with “warm”
or “cold” caches. On one hand, real systems do not genenatiywith completely cold
caches. On the other hand, a benchmark that accesses toccauk®dd data may be un-
realistic as well. In addition, since requests will be maisegrviced from memory, the file
or storage system will not be adequately exercised. Fyrtfwerbringing the cache back
to a consistent state between runs can cause timing intemsiss. If cold cache results
are desired, caches should be cleared before each run. arhlsecdone by allocating and
freeing large amounts of memory, remounting the file systetoading the storage driver,
or rebooting. However, we have found that rebooting is méfextve than the other meth-
ods [Wright et al. 2005]. When working in an environment witlultiple machines, the
caches on all necessary machines must be cleared. Thisedglldneate identical runs,
thus ensuring more stable results. If, however, warm caebglts are desired, this can be
achieved by running the experiment n+1 times, and discgithia first run’s result.

Most modern disks use Zoned Constant Angular Velocity (ZC#/store data. In this
design, the cylinders are divided into zones, where the murobsectors in a cylinder
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increases with the distance from the center of the disk. Bszaf this, the transfer rate
varies from zone to zone [Meter 1997]. It has been recomne@maleninimize ZCAV
effects by creating a partition of the smallest possible siz the outside of the disk [Ellard
and Seltzer 2003b]. However, this makes results less tiealbsnd may not be appropriate
for all benchmarks (for example, long seeks may be necessasiyow the effectiveness
of the system). We recommend simply specifying the locatibthe test partition in the
paper to help reproducibility.

Most file system and storage benchmarks are run on an empénsyshich could make
the results different than a real-world setting. A systeny imaaged by running a workload
based on system snapshots [Smith and Seltzer 1997]. Hovemyiag a 1GB file system
by seven months using this method required writing 87.3GBaté. The amount of time
required to age a file system would make it impractical fogéarsystems. TBBT has a
faster, configurable aging technique, but it is less raalg@hce it is purely synthetic [Zhu
et al. 2005]. Some other ways to age a system before runnirenehimark are to run
a long-term workload, copy an existing raw image, or to rg@atrace before running
the benchmark. It should be noted that for some systems amthbearks, aging is not a
concern. For example, aging will not have any effect whetasgpg a block-level trace
on a traditional storage device, since the benchmark wikle identically regardless of
the disk’s contents.

To ensure the reproducibility of results, all non-essésgavices and processes should
be stopped before running the benchmark. These processeawse anomalous results or
higher than normal standard deviations for a set of runs. él@w processes such@sn
will coexist with the system when used in the real world, andtsnust be understood
that these results are measured in a sterile environmemallyg we would be able to
demonstrate performance with the interactions of othecgsees present. However, this
is difficult because the set of processes is specific to a mashtonfiguration. Instead,
we recommend using multi-threaded workloads because tloeg atcurately depict a real
system that normally has several active processes. Iniaddinsure that no users log into
the test machines, and make sure that no other traffic is eaingwyour network bandwidth
while running benchmarks that involve your network.

3.3 Running The Benchmarks

There are four important guidelines to running benchmareperly. First, one should
ensure that every benchmark run is identical. Second, estkhould be run several times
to ensure accuracy, and standard deviation or confideneksisivould be used to determine
the appropriate number of runs. Third, tests should be rua fong enough period of time,
so that the system is in steady state for a majority of the fourth, the benchmarking
process should be automated using scripts or available tamh as Auto-pilot [Wright
et al. 2005] to avoid mistakes associated with manual répetiasks. This is discussed
further in Section 11.

3.4 Presenting The Results

Once results are obtained, they must be presented appriprsa that accurate conclu-
sions may be derived from them. Aside from the data that isgred, the benchmark
configurations and environment should be accurately desdriProper graphs should be
displayed, with error bars, where applicable.

We recommend using confidence intervals, rather than stdrdkviation, to present
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results. The standard deviation is a measure of how muchti@nithere is between the
runs. The half-width of the confidence interval describew ffar the true value may be
from the captured mean with a given degree of confidence, @5§6). This provides a
better sense of the true mean. In addition, as more benchmaskare performed, the
standard deviation may not decrease, but the width of th&dsce interval will.

For experiments with less than 30 runs, one should be canefuto use the normal
distribution for calculating confidence intervals. Thidiscause the central limit theorem
no longer holds with a small sample size. Instead, one meghesStudent’s t-distribution.
This distribution may also be used for experiments with ast80 runs, since in this case
it is similar to the normal distribution.

Large confidence interval widths or non-normal distribnianay indicate a software
bug or benchmarking error. For example, the half-widthefdconfidence intervals should
be less than 5% of the mean. If the results are not stable gitieer there is a bug in the
code, or the instability should be explained. Anomalousltege.g., outliers) should never
be discarded. If they are due to programming or benchmasirggs, the problem should
be fixed and the benchmarks rerun to gather new and more sésiks.

3.5 Validating Results

Other researchers may wish to benchmark your software fombain reasons: (1) If they
wish to reproduce your results or confirm them, or (2) If theymivto compare their system
to yours.

First, itis considered good scientific practice to providewgh information for others to
validate your results. This includes detailed hardwaresafivare specifications about the
testbeds. Although it is usually not practical to includetstarge amounts of information
in a conference paper, it can be published in an online appewhereas it can be difficult
for a researcher to accurately validate another’s resuttsowt the exact testbed, it is still
possible to see if the results generally make sense.

Second, there may be a case where a researcher createsm thatbas similar prop-
erties to yours (e.g., they are both encryption file systentisjvould be logical for the
researcher to compare the two systems. However, if yourrpdpeved an X% overhead
over ext2, and the new file system has a Y% overhead over egt2laim can be made
about which of the two file systems is better. The researdiauld benchmark both file
systems, using a setup that is as similar as possible tothia original benchmark. This
way both file systems are tested under the same conditionsedver, since they are run-
ning the benchmark in the same way that you did, no claim cande that they chose a
specific case in which their file system performs better.

To help solve these two issues, enough information must lmkeragailable about your
testbed (both hardware and any relevant software) so thatitside researcher can validate
your results. If possible, make your software availabletteoresearchers so that they can
compare their system to yours. Releasing the source isrpedfebut a binary release can
also be helpful if there are legal issues preventing thesg®f source code. SOSP 2007 is
attempting to improve this situation by asking authors i $hbmission form if they will
make the source code and raw data for their system and ex@etsravailable so that others
can reproduce the results. If enough authors agree to thiingf) and other conferences
follow suit, this could make it easier to compare similarteyss and reproduce results in
the future. In addition, any benchmarks that were writtethamy traces that were collected
should be made available to others.
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Fig. 1. The figure on the left shows the cumulative distribatfunction (CDF) for the number of runs that were
performed in the surveyed benchmarks. The figure on the iggtiie CDF of the same data categorized by
conference. A value of —1 was used for benchmarks where tideuof runs was not specified.

4. COMPLIANCE WITH THE GUIDELINES

We now examine how well the surveyed papers followed the loeaeking practices that
were discussed in Section 3.

Number of runs.Running benchmarks multiple times is important for engyidocuracy
and presenting the range of possible results. Reportinguirber of runs allows the reader
to determine the benchmarking rigor. We now examine the rarrobruns performed in
each surveyed experiment. To ensure accuracy, we did natieexperiments where one
operation was executed many times and the per-operatiemdatvas reported, because it
was not clear whether to count the number of runs as the nuoflienes the operation
was executed, or the number of times the entire benchmarkwasFigure 1 shows the
results from the 388 benchmarks that were counted. We fduatdwo papers [Wang et al.
2002; Wright et al. 2003] ran their benchmarks more than psicee they included error
bars or confidence intervals, but did not specify the numibenss. These are shown as
two runs. The figure shows that the number of runs were notifsp@dor the majority
of benchmarks. Assuming that papers that did not specifyntiraber of runs ran their
experiments once, we can break down the data by conference:

Conference | Mean | Standard Deviation | Median
SOSP 2.1 2.4 1
FAST 3.6 3.6 1
OSDI 3.8 4.3 2
USENIX 4.7 6.2 3

The per-conference values are presented for informaticalak and we feel they may of
interest to the reader. However, we caution the reader aga@iawing conclusions based on
these statistics, as benchmarking rigor alone does natdiete the quality of a conference,
and the number of runs alone does not determine benchmaigiry

Statistical dispersionAfter performing a certain number of runs, it is importantite
form the reader about the statistical dispersion of theltes4.6% of the surveyed papers
included at least a general discussion of standard demiatitd 11.2% included confidence
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Table . Percentage of papers that discussed standardidesiar confidence intervals, classified by conference.
FAST | OSDI | SOSP | USENIX
Number of papers 12 21 51 23
Standard deviations| 8.3% | 28.6% | 27.5% 69.6%
Confidence intervals| 16.7% | 19.1% | 7.8% 8.7%
Total 25.0% | 47.6% | 35.3% 78.3%

0.8

0.6

04

Cumulative Probability

0.2

1 2 4 8 16 32 64 128 256 512
Elapsed Time (minutes)

Fig. 2. CDF of the number of benchmarks that were run in theeywd papers with a given elapsed time. Note
the log scale on the x-axis.

intervals. The percentage of papers that have discusdest eibe varied between 35.7%
and 83.3% per year, but there was no upward or downward treedtine. Interestingly,
we did notice significant differences between confererstemyn in Table I, but we do not
suggest that this is telling of the overall quality of anytardar conference. In addition to
informing the reader about the overall deviations or indds\for the paper, it is important
to show statistical dispersion for each result. This candreedvith error bars in graphs, by
augmenting tables, or by mentioning it in the text. From &llh@ surveyed benchmarks,
only 21.5% included this information.

Benchmark runtimesTo achieve stable results, benchmarks must run for a longgino
time to reach steady state and exercise the system. Thipésially important as bench-
marks must scale with increasingly faster hardware. Weddakt the runtimes of the 198
experiments that specified the elapsed time of the benchnMokt benchmarks that re-
ported only per-operation latency or throughput did notc#igetheir runtime. For each
experiment, we took the longest elapsed time of all confiuma, and rounded them up
to the nearest minute. For benchmarks with multiple phasess were added to create a
total time. The results are summarized in Figure 2. We carnrstree figure that 28.6% of
benchmarks ran for less than one minute, 58.3% ran for legsfibe minutes, and 70.9%
ran for less than ten.

Number of benchmarks'he number of benchmarks used for performance evaluations
in each paper is shown in Figure 3. We can see that 37.7% ofdperp used only one or
two benchmarks, which in most cases is not sufficient for deeto fully understand the
performance of a system.

System descriptionslo gain some idea of testbed specifications that were pdigh
the surveyed papers, we now present the number of paranties¢msere listed. It must be
noted that not all parameters are equally important, anidsthrae parameters are actually
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Fig. 3. CDF of the number of benchmarks that were run in theesud papers.

a subset of other parameters. For example, a disk’s speediiged as one parameter, but
a disk's model number is counted as one parameter as well,theeigh the disk’s speed
and several other disk parameters can be found from the nspeéeifications. Since it is
not clear how to weigh each parameter, we will instead cautiat these results should
be used only as rough estimates. An average of 7.3 systemrmpteis were reported per
paper, with a standard deviation of 3.3. The median was 7.la\this is not a small
number, it is not sufficient for reproducing results. In aiudh, only 35.9% of the papers
specified the cache state during the benchmark runs. Wefgpleeitestbed used in this
article in Section 6, which we believe should be sufficiemgjeroduce our results.

5. RELATED WORK

A similar survey was conducted in 1997 covering more gengyatems papers [Small
et al. 1997]. The survey included ten conference proceadimmgn the early to mid 90’s.
The main goals of that survey were to determine how reprdid@eind comparable the
benchmarks were, as well as to discuss statistical rigordd\eot discuss statistical rigor
in more detail in this paper, since there is a good discugsiesented there. They went on
to advise on how to build good benchmarks and report them pritper statistical rigor.
Some results from their survey are that over 90% of file sysbemchmarks run were
ad-hoc, and two-thirds of experiments presented a singhebeu as a result without any
statistical information.

In 1999, Mogul presented a similar survey of general OS rebepapers and com-
mented on the lack of standardization of benchmarks andeag¢iogul 1999]. He con-
ducted a small survey of two conference proceedings and tathe conclusion that the
operating system community is in need of good standardizedtimarks. Of the eight file
system papers he surveyed, no two used the same benchmaddyaeperformance.

Chen and Patterson concentrated on developing an I/O bexkhihat can shed light on
the causes for the results, scales well, has results thabanparable across machines, is
general enough that it can be used by a wide range of applisatand is tightly specified
so that everyone follows the same rules [Chen and Patte@®8].1This benchmark does
not perform metadata operations, and is designed to benkhngers and 1/0O devices.
The authors go on to discuss how they made a self-scalindbear with five parameters:
data size, average size of an I/O request, fraction of readadipns (the fraction of write
operations is 1 minus this value), fraction of sequentiaess (the fraction of random
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access is 1 minus this value), and the number of procesagngskO requests. Their
benchmark keeps four of these parameters constant whijengathe fifth, producing five
graphs. Because self-scaling will produce different woskls on different machines, the
paper discusses how to predict performance, so that resuit®e compared, and shows
reasonable ability to perform the predictions.

A paper by Tang and Seltzer from the same research groupledntiies, Damned
Lies, and File System Benchmarks” [Tang and Seltzer 1994} ane source for some
of our observations about the Andrew (Section 7.3), LADDS&dtion 7.5), and Bonnie
(Section 9.1) benchmarks, as well as an inspiration forl#ger study.

Tang later expanded on the ideas of this paper, and intradaceenchmark called
dtangbm [Tang 1995]. This benchmark consists of a suite of microebemarks called
fsbenchand a workload characterizer. Fsbench has four phases:

(1) Measures the disk performance so that it can be knownhghé&nprovements are
due to the disk or file system.

(2) Estimates the size of the buffer cache, the attributbe&aand the name translation
cache. Thisinformation is used by the next two phases taremsaper benchmark scaling.

(3) Runs the micro-benchmarks whose results are reportied.b&€nchmark takes var-
ious measurements within each micro-benchmark, providingh information about the
file system’s behavior. The reported metric is KB/sec. That fivo micro-benchmarks in
this phase test block allocation to a single file for sequa¢iathd random-access patterns.
The third micro-benchmark tests how blocks are allocatefilieés that are in the same
directory. The fourth micro-benchmark measures the paréarce of common meta-data
operations (create, delemakdir , rmdir , andstat ).

(4) Performs several tests to help file system designerpihperformance problems.
Itisolates latencies for attribute (inode) creation, diogy creation, attribute accesses, and
name lookups by timing different meta-data operations arfbpming some calculations
on the results. It also uses a variety of read patterns to fisdswhere read-ahead harms
performance. Finally, it tests how well the file system hasdloncurrent requests.

The second component dfangbm , the workload characterizer, takes a trace as input,
and prints statistics about the operation mix, sequenéedus random accesses, and the
average number of open files. This information could théca#ly be used in conjunction
with the output fronfsbench to estimate the file system’s performance for any workload,
although the authors aftangbm were not able to do so accurately in that work.

Another paper from Seltzer's group [Seltzer et al. 1999]gmsys that not only are
currently-used benchmarks poor, but the types of benchenidwdkt are run do not pro-
vide much useful information. The current metrics do nowe a clear answer of which
system would perform better for a given workload. The commuoe simple workloads are
not adequate, and so they discuss three approaches toaigplispecific benchmarking.
In the first, system properties are represented in one vaotbthe workload properties are
placed in another. Combining the two vectors can producdeaant performance met-
ric. The second approach involves using traces to develofilgs that can stochastically
generate similar loads. The third uses a combination of thetfio.

According to Ruwart, not only are current benchmarks iited for testing today’s sys-
tems, they will fare even worse in the future because of tstesys’ growing complexities
(e.g., clustered, distributed, and shared file systemsyvfRL2001]. He discusses an ap-
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proach to measuring file system performance in a large-schlstered supercomputer
environment while describing why current techniques asafficient.

Finally, Ellard and Seltzer describe some problems that éxperienced while bench-
marking a change to an NFS server [Ellard and Seltzer 200313, they describe ZCAV
effects, which were previously documented only in papea thiscuss file system lay-
outs [Meter 1997] (not in performance evaluations). Siteeitner tracks on a disk have
fewer sectors than the outer tracks, the amount of data readingle revolution can vary
greatly. Most papers do not deal with this property. AsidefrZCAV effects, they also
describe other factors that can affect performance, su@C& command queuing, disk
scheduling algorithms, and differences between trangpotbcols (i.e., TCP and UDP).

6. BENCHMARKING METHODOLOGY

In this section, we present the testbed and benchmarkirgpdtres that we used for con-
ducting the experiments throughout the remainder of thpepa/Ne describe the hardware
and software configuration of the test machine in Sectiom@,we discuss our bench-
marking procedure in Section 6.

System Configuratione conducted all our experiments on a machine with a 1.7GHz
Pentium 4 CPU, 8KB of L1 Cache, and 256KB of L2 Cache. The mbtieed was an In-
tel Desktop Board D850GB with a 400 MHz System Bus. The macbimtained 1GB of
PC800 RAM. The system disk was a 7200 RPM WD Caviar (WD200Bi#) 20GB ca-
pacity. The benchmark disk was a Maxtor Atlas (Maxtor-8CI&5,000 RPM, 18.4GB,
Ultra320 SCSI disk. The SCSI controller was an Adaptec ABSZA U160.

The operating system was Fedora Core 6, with patches as ch\dar; 2007. The system
was running a vanilla 2.6.20 kernel and the file system wa3, exiless otherwise speci-
fied. Some relevant program versions, obtained by passmgtbrsion  flag on the
command line, along with the Fedora Core package and vess®@GCC 4.1.1 (gcc.i386
4.1.1-51.fc6), GNU Id 2.17.50.0.6-2.fc6 (binutils 2.170.8.6-2.fc6), GNU autoconf 2.59
(autoconf.noarch 2.59-12), GNU automake 1.9.6 (automakech 1.9.6-2.1), GNU Make
3.81 (make 1:3.81-1.1), and GNU tar 1.15.1 (tar 2:1.15.1eB}

The kernel configuration file and the full package listing available atwww.fsl.
cs.sunysb.edu/project-fsbench.html

Benchmarking ProceduréiVe used the Autopilot v.2.0 [Wright et al. 2005] benchmark-
ing suite to automate the benchmarking procedure. We cawefighutopilot to run all tests
at least ten times, and compute 95% confidence intervaleéanian elapsed, system, and
user times using the Studentlistribution. In each case, the half-width of the intervalsnv
less than 5% of the mean. We report the mean of each set of luasldition, we define
“wait time” to be the time that the process was not using th&l @Rostly due to I1/O).

Autopilot rebooted the test machine before each new seguafimrtins to minimize the
influence of different experiments to each other. Autopdlotomatically disabled all un-
related system services to prevent them from influencingébkalts. Compilers and ex-
ecutables were located on the machine’s system disk, sorsheéun of each set of tests
was discarded to ensure that the cache states were cohsiseronfigured Autopilot to
unmount, recreate and then remount all tested file systefosdeach benchmark run. To
minimize ZCAV effects, all benchmarks were run on a pantiiocated toward the outside
of the disk that was just large enough to accommodate thedttat[Ellard and Seltzer
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2003b]. However, the partition size was big enough to avoédfile system'’s space-saving
mode of file system operation. In the space-saving mode yfiiems optimize their oper-
ation to save disk space and thus have different performamamcteristics [Meter 1997].

7. MACRO-BENCHMARKS

In this section we describe the macro-, or general-purpgusschmarks that were used in
the surveyed research papers. We point out the strengthsveakinesses in each. For
completeness, we also discuss several benchmarks thaheteueed. Macro-benchmark
workloads consist of a variety of operations and aim to sateisome real-world workload.
The disadvantage of macro-benchmarks is that the worklaadmot be representative of
the workload that the reader is interested in, and it is véficdlt to extrapolate from the
performance of one macro-benchmark to a different workload

Additionally, there is no agreed-upon file system benchnihét everyone can use.
Some computer science fields have organizations that doeatehmarks and keep them
up to date (TPC in the database community, for example). eliseno such organization
specifically for the file system community, although SPEG bae benchmark targeted
for a specific network file system protocol—see Section 7.6r dtorage, the Storage
Performance Council [SPC 2007] has created two standatieechmarks, which we de-
scribe in Section 7.6. We have observed that many researakerthe same benchmarks,
but they often do not explain the reasons for using them ortwebenchmarks show
about the systems they are testing. From the 148 macro-trarkrexperiments that were
performed in the surveyed papers, 20 reported that they thane so because the bench-
mark was popular or standard, and 28 provided no reason.aO#flers described what
real-world workload the given benchmark was mimicking, that not say why it was im-
portant to show those results. In total, inadequate reagomas given for at least 32.4%
of the macro-benchmark experiments that were performeds [€ads us to believe that
many researchers use the benchmarks that they are used thaarade commonly used,
regardless of suitability.

We describe Postmark in Section 7.1, compile benchmarksetti® 7.2, the An-
drew benchmark in Section 7.3, TPC benchmarks in SectionSPEC benchmarks in
Section 7.5, SPC benchmarks in Section 7.6, NetNews in@e¢ti7, and other macro-
benchmarks in Section 7.8.

7.1 Postmark

Postmark [Katcher 1997; VERITAS Software 1999], createtld@7, is a single-threaded
synthetic benchmark aimed at measuring file system perfocmaver a workload com-
posed of many short-lived, relatively small files. Such akimad is typical of electronic
mail, Netnews, and Web-based commerce transactions abhge8is. The workload in-
cludes a mix of data and meta-data—intensive operationsvelter, the benchmark only
approximates file system activity: it does not perform angligption processing, and so
the CPU utilization is less than that of an actual applicatio

The benchmark begins by creating a pool of random text filéis wniformly distributed
sizes within a specified range. After creating the files, ausaqe of “transactions” is
performed (in this context, a transaction is a Postmark tard is unrelated to the database
concept). The number of files, the number of subdirectotles file size range, and the
number of transactions are all configurable. Each Postnmarisaction has two parts: a
file creation or deletion operation paired with a file read gp@nd. The ratios of reads to
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Table Il. The default Postmark v1.5 configuration, alongwiite number of research papers that disclosed each
piece of information (from the 30 papers that used Postrmatke papers we surveyed).

Parameter Default Value Number Disclosed (out of 30)
File sizes 500-10,000 byteg 21
Number of files 500 28
Number of transactions 500 25
Number of subdirectories 0 11
Read/write block size 512 bytes 7
Operation ratios equal 16
Buffered I/O yes 6
Postmark Version - 7

appends and creates to deletes is configurable. A file creagieration creates and writes
random text to a file. A file deletion operation removes a ranigachosen file from the
active set. A file read operation reads a random file in itgefytand a file write operation
appends a random amount of data to a randomly chosen filealdaspossible to choose
whether or not to use buffered 1/O.

One drawback of using Postmark is that it does not scale wigtl the workload. Its
default workload, shown in Table II, does not exercise thledjistem enough. This makes
it no longer relevant to today’s systems, and as a resularekers use their own configu-
rations. On the machine described in Section 6, the defasitnPark configuration takes
less than a tenth of one second to run, and barely perform§@n¥ne paper [Nightin-
gale et al. 2005] used the default configuration over NFSerattan updating it for current
hardware, and the benchmark completed in under seven sedbislunlikely that any ac-
curate results can be gathered from such short benchmask hu$ection 12.2, we show
how other Postmark configurations behave very differentiynf each other. Rather than
having the number of transactions to be performed as a paearitavould be more bene-
ficial to run for a specified amount of time, and report the peaksaction rate achieved.
Benchmarks such as Spec SFS and AIM7 employ a similar meligyo

Having default parameters that become outdated creatgsrtvabems. First, there is no
standard configuration, and since different workloads @serthe system differently, the
results across research papers are not comparable. Secbatl research papers precisely
describe the parameters that were used, and so resultstaspnaducible.

Few research papers specify all parameters necessanpfoducing a Postmark bench-
mark. From the 106 research papers that we surveyed, 30 ustch&k as one of their
methods for performance evaluation [Ng et al. 2002; Sarkail.e2003; Sivathanu et al.
2004; Radkov et al. 2004; Tan et al. 2005; Anderson et al. 2Ri@ghtingale et al. 2005;
Wang et al. 2002; Seltzer et al. 2000; MacCormick et al. 2@®4-El-Malek et al. 2005;
Thereska et al. 2004; Magoultis et al. 2002; Aranya et al. 280shiswamy-Reddy et al.
2004; Zhang and Ghose 2003; Wright et al. 2003; Strunk etGl02Nightingale et al.
2006; Sivathanu et al. 2004; Prabhakaran et al. 2005; Staiin 2001; Soules et al. 2003;
Sivathanu et al. 2006; Denehy et al. 2005; Weddle et al. 2@2hjindler et al. 2002;
Magoutis et al. 2003; Wang et al. 2002; Wang and Merchant ROable 1l shows how
many of these papers disclosed each piece of informatioperBahat use configurable
benchmarks should include all parameters to make the samelaningful; only five did so.
These five papers specified that any parameters not mentieeredthe defaults (Table 11
gives them credit for specifying all parameters).

In addition to failing to specify parameters, Table Il shatat only 5 out of 30 research
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papers mentioned the version of Postmark that they used iSleispecially crucial with
Postmark because of major revisions that make results fiffereht versions incompara-
ble. The biggest changes were made in version 1.5, wheretighimark’s pseudo-random
number generator was overhauled. Having a generator inrtigrgm itself is a good idea,
as it makes benchmarks across various platforms more calearThere were two key
bugs with the previous pseudo-random number generatat, Eidid not provide numbers
that were random enough. Second, and more importantly ihdi generate large enough
numbers, so files were not created as large as the parametdfieh, causing results to be
inaccurate at best. Having a built-in pseudo-random nurgbeerator is an example of a
more general rule: library routines should be avoided wnths goal of the benchmark is
to measure the libraries because this introduces more depeies on the machine setup
(OS, architecture, and libraries).

Another lesson that Postmark teaches us is to make an effd&edp benchmarking
algorithms scalable. The algorithm that Postmark usesrtdamly choose files i© (V)
on the number of files, which does not scale well with the waek. 1t would be trivial
to modify Postmark to fix this, but would make results inconafde with others. While
high levels of computation are not necessarily a bad qualigy should be avoided for
benchmarks that are meant to be 1/0-bound.

An essential feature for a benchmark is accurate timingtrRark uses théime(2)
system call internally, which has a granularity of one secofhere are better timing
functions available (e.gettimeofday ) that have much finer granularity and therefore
provide more meaningful and accurate results.

One of the future directions that Postmark was looking aliiséng different numbers
of readers and writers, instead of just one process thatlmés Four of the surveyed pa-
pers [Aranya et al. 2004; Anderson et al. 2004; Anderson.&02; Wang and Merchant
2007] ran concurrent Postmark processes. Seeing how heufiipcesses affect results
is useful for benchmarking most file systems, as this refleatworld workloads more
closely. However, since Postmark is not being maintainedufpdates have been made to
Postmark since 2001), this will probably not be done.

One research paper introduces Filemark [Bryant et al. 20@2th is a modified version
of Postmark 1.5. It differs in five respects. First, it addsltivthreading so that it can
produce a heavier and more realistic workload. Secondgegesttimeofday  instead
of time so that timing is more accurate. Third, it uses the same skiesffor multiple
transaction phases. This makes the runtime faster, bubpesffewer writes, and extra
care must be taken to ensure that data is not cached if thig @esired. Fourth, it allows
the read-write and create-delete ratios to be specifiedetoéarest 1% instead of 10% as
with Postmark. Fifth, it adds an option to not perform theatiebhase, which the Filemark
authors claim has a high variation and is almost meaningM&ssuggest instead that if
some operation has a high variation, it should be furthezstigated and explained rather
than discarded.

Postmark puts file systems under heavy stress when the cmatf@uis large enough,
and is a fairly good benchmark. It has good qualities such lagilain pseudo-random
number generator, but also has some deficiencies. The iemdhing is to keep the posi-
tive and negative qualities in mind when running the benakraad analyzing results. In
sum, we suggest that Postmark be improved to have a scalabkéoad, more accurate
timing, and allow for multi-threaded workloads.
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7.2 Compile Benchmarks

Thirty-six of the papers that we surveyed timed the comgitifisome code to benchmark
their projects:

—ten compiled SSH [Soules et al. 2003; Ng et al. 2002; Schimell al. 2002; Denehy
et al. 2005; Strunk et al. 2000; Prabhakaran et al. 2005z&wsdt al. 2000; Kroeger and
Long 2001; Stein et al. 2001; Weil et al. 2006],

—eight compiled an OS kernel [Zhang and Ghose 2003; Mazgdrak 1999; Tolia et al.
2004; Gulati et al. 2007; Radkov et al. 2004; Sivathanu e2@06; Papathanasiou and
Scott 2004; Muniswamy-Reddy et al. 2006],

—six papers (all from our research group) compiled Am-jfllanya et al. 2004; Muniswamy-
Reddy et al. 2004; Zadok and Nieh 2000; Zadok et al. 2001; h¥egjal. 2003; Zadok
etal. 1999],

—five compiled Emacs [Gulati et al. 2007; Li et al. 2004; Fule2800; Maziéres 2001;
Muthitacharoen et al. 2001],

—three compiled Apache [Peek and Flinn 2006; Nightingald.e2006; Nightingale et al.
2005],

—five compiled other packages [Gulati et al. 2007; Sobti e2@02; Abd-EI-Malek et al.
2005; Gniady et al. 2004; Lee et al. 1999],

—two did not specify the source code being compiled [Kroeget Long 2001; Kim et al.
2000].

The main problem with compile benchmarks is that because ahe CPU-intensive,
they can hide overheads in many file systems. This issue ¢ushed further in Sec-
tion 12.2. However, a CPU-intensive benchmark may be a redwe choice for a file sys-
tem that already has a significant CPU component (such ascayption or compression
file system). Even so, a more I/O-intensive benchmark shioaildin as well. Other issues
relating to compile benchmarks affect the ability of read®ercompare, fully understand,
and reproduce benchmark results:

—Different machines may have different compiler tool clsaispecifically:
—Different architectures produce different code.
—Different compilers utilize different optimizations.
—The source code may not compile on all architectures, ater glackages often can-
not compile on newer systems so the workload becomes obsolet

—Different machines are configured differently (with regdo both hardware and soft-
ware), so the configuration phase will not be the same on alhinas, and the resulting
code will be different as well.

—Some compilations (such as kernels) have different cordigan options, resulting in
a different configuration phase, and different resultingezcAlthough default configu-
ration files are sometimes included, using them can reswlbmpilation errors, as we
have experienced when compiling some versions of the Lireure.

—The operation mixes change depending on which programimgts®mpiled, and even
on its version.

—The compile process is always growing more complex ancetieemuch variation be-
tween programs. Most require explicit configuration phasesl some require phases
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Table lll. SSH 2.1.0, Am-utils 6.1b3, and Linux kernel 2@ ¢haracteristics. The total size refers to the pre-
compiled package, since the total size after compiling séesp-dependent.
SSH Am-utils | Linux Kernel

Directories 54 25 608
Files 637 430 11,352
Lines of Code 170,239 61,513 4,490,349

Code Size (Bytes)| 5,313,257 | 1,691,153 126,735,431
Total Size (Bytes) | 9,068,544 | 8,441,856 174,755,840

that resolve dependencies. The amount of time spent in dadean also vary signif-
icantly [Zadok 2002].

To allow a benchmark to be accurately reproduced, all parensighat could affect the
benchmark must be reported. This is particularly difficutthva compile benchmark. From
the 33 papers that used compile benchmarks, only one spkttifecompiler and linker
versions, and one specified compiler options. Eight faiedpecify the version of the
code that was being compiled, and 19 failed to specify thepilation steps that were
being measured. Although it is easy to report the source gedgon, it is more difficult
to specify relevant programs and patches that were indtalfeor example, Emacs has
dependencies on the graphical environment, which may dectipzens of libraries and
their associated header files. However, this is feasibletib & package manager has been
used and can provide information about all of the installemjpam versions. Because of
the amount of information that needs to be presented, wanwemnd creating an online
appendix with the detailed testbed setup.

There is a common belief that file systems see similar loadsgandent of the soft-
ware being compiled. Using OSprof [Joukov et al. 2006], wefifed the build process
of three packages commonly used as compile benchmarks:SH)251.0, (2) Am-utils
6.1b3, and (3) the Linux 2.4.20 kernel with the default camfigion. Table Il shows the
general characteristics of the packages. The build praafetseese packages consists of a
configuration and a compilation phase. The configuratiorspltansists of running GNU
configure  scripts for SSH and Ame-utils, and runningnake defconfig dep " for
the Linux kernel. We analyzed the configuration and comipitephases separately, as
well as together. Before the configuration and compilatibages, we remounted the ext2
file system that the benchmark was run on to reduce cachiegtsff Figure 4 shows the
distribution of the total number of invocations of all thet2%FS operations used during
the build processes. Note that each of the three graphs iffersit scales for the number
of operations (y-axis).

Figures 4(a) and 4(b) show that even though the SSH and Amhutild process se-
guence, source-file structure, and total sizes appear téntiks their operation mixes
are quite different; moreover, the fact that SSH has nehriyet times the lines of code of
Am-utils is also not apparent from analyzing the figures. &mtigular, the configuration
phase dominates in the case of Am-utils whereas the congpilphase dominates the SSH
build. More importantly, the read-write ratio for the Amistbuild was 0.75:1, whereas
it was 1.28:1 for the SSH build. This can result in significaetformance differences
for read-oriented or write-oriented systems. Not surpdby, the kernel build process’s
profile differs from both SSH and Am-utils. As can be seen igufé 4(c), both of the
kernel build phases are strongly read biased. In additienkéernel build process is more
intensive in file open and file release operations. As we caneaen seemingly similar
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Fig. 4. Operation mixes during three compile benchmarkseas dy the ext2 file system. Note that each plot

uses a different scale on the y-axis.
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Time (seconds)
Time (seconds)

Version 3.5 Version 3.7 Version 3.9 Version 3.5 Version 3.7 Version 3.9

(a) Configure phase (b) Compile phase

Fig. 5. Time taken to configure and compile OpenSSH versidns337, and 3.9 on ext2. Note that error bars are
shown, but are small and difficult to see.

compile benchmarks exercise the test file systems with l\adifferent operation mixes.

Now let us consider compilation of the same software withlgly different versions. In
“Opportunistic Use of Content Addressable Storage forribisted File Systems,” by To-
lia, et al. [Tolia et al. 2003], the authors show the commityn&und between versions of
the Linux 2.4 kernel source code (from 2.4.0 to 2.4.20) antd/ben several nightly snap-
shots of Mozilla binaries from March 16th, 2003 to March 25t0803. The commonality
for both examples is measured as the percentage of idebtimeks. The commonality
between one version of the Linux source code and the nexemfigm approximately
72% to almost 100%, and 2.4.20 has only about 26% in commdn2vt.0. The Mozilla
binaries show us how much a normal user application can éawer the course of one
day—subsequent versions had approximately 42—71% in comamal only about 30% of
the binary remained unchanged over the course of ten days.illListrates the point that
even when performing a compile benchmark on the same progtaxersion can greatly
affect the results.

Not only do the source code and the resulting binaries changehe operation mixes
change as well. To illustrate this point, we compiled thrégecknt, but recent versions
of SSH on our reference machine, using the same testbed athdadaotogy described in
Section 6. We used SSH because it is the most common apptichtit was compiled in
the papers we surveyed, and specifically OpenSSH becaussjiiles on modern systems.

Each test consisted of unpacking the source code, configitricompiling it, and then
deleting it. The first and last steps are less relevant to @audsion, and so we do not
discuss them further. The results for the configure and clengiiases are shown in Fig-
ure 5. Although the elapsed times for the configure phase iaes 3.5 and 3.7 are
indistinguishable, there is a much larger difference betweersions 3.7 and 3.9 (42.3%
more elapsed time, 55.6% more system time, and 25.1% mor¢émsd. There is a differ-
ence between all three versions for the compile phase, witfeases ranging from 6.0%
to 8.4% between subsequent versions for all time componéfgsan see that versions of
the same program that are close to each other are very diffened we can therefore infer
that the difference will be greater between versions thasaread further apart, and more
so for different programs. Finally, we see how small the @Hef /O operations are on
the benchmark results.
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7.3 The Andrew File System Benchmark

This benchmark was created in 1988 to evaluate the perfareafithe Andrew File Sys-
tem [Howard et al. 1988]. The benchmark script operates areatdry subtree containing
the source code for a program. The operations that were nifos¢he benchmark were
intended to be representative of an average user workloaddirtl et al. 1988], although
this was not shown to be statistically accurate. Nine paffeaswe surveyed used this
benchmark for performance analysis [Adya et al. 2002; @adiret al. 1999; Rhea et al.
2003; Gopal and Manber 1999; Tolia et al. 2003; Kim et al. 20Q4Lilera et al. 2003;
Saito et al. 2002].
The Andrew benchmark has five phases:

(1) MakeDir - Constructs directories in a target subtree identical ®odtructure of the
original subtree.

(2) Copy- Copies all of the files from the source subtree to the tangetrse.
(3) ScanDir- Perform astat operation on each file of the target subtree.
(4) ReadAll- Read every byte of every file in the target subtree once.

(5) Make- Compile and link all files in the target subtree.

This benchmark has two major problems. First, the final plofgiee benchmark (com-
pilation) dominates the benchmark’s run time, and intredbual of the drawbacks of com-
pile benchmarks to this one (see Section 7.2). Second, thehbeark does not scale. The
default data set will fit into the buffer cache of most systdoday, so all read requests
after theCopyphase are satisfied without going to disk. This does not geoah accurate
picture of how the file system would behave under workloadsreltlata is not cached. In
order to resolve the issue of scalability, four of the resbarapers used a source program
that is larger than the one that comes with the benchmarls, Tibiwvever, causes results to
be incomparable between papers.

Several research papers use a modified version of the Andmeehimark (MAB) [Ouster-
hout 1990] from 1990. The modified benchmark uses the samgitemo make the re-
sults more comparable between machines. This solves orfeedésues that was seen
when examining compile benchmarks in Section 7.2. Althougjhg a standard compiler
for all systems is a good solution, it has a drawback. Thethaln is for a machine that
does not exist, and it is therefore not readily available moidmaintained. This could af-
fect usability in future machines. Seven of the researclepaihat we surveyed used this
benchmark [Mazieres et al. 1999; Muthitacharoen et al. 2B@#8ioleau and Ridoux 2003;
Santry et al. 1999; Nightingale and Flinn 2004; Cipar et 802, Sobti et al. 2002].

One of the papers [Sobti et al. 2002] further modified the hemark by removing the
Make phase and increasing the number of files and directorieshoAlh this removes
the complications associated with a compile benchmark akebstcare of scalability, data
can still be cached depending on the package size. Anotiper idightingale and Flinn
2004] used Apache for the source files, and measured the tiregttact the files from
the archive, configure and compile the package, and remevélés. These two papers
reported that they used a “modified Andrew benchmark,” utesithe term “modified” is
rather ambiguous, we could not determine if they had usehB compiler, or if it was
called “modified” because it used a different package or hfigrdnt phases.

The Andrew benchmark basically combines a compile benckarat a micro-benchmark.
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We suggest using separate compile benchmarks and micaremks as deemed appro-
priate (see Section 7.2 and 9 for extensive discussionsan ezspectively).

Notable QuotablesWe believe some quotations from those papers that used the An
drew benchmark can provide some insight into the reasoneufaring this benchmark,
and for the type of workload that it performs. Six of the fiftegapers that used the An-
drew benchmark (or some variant) stated that it was becawsasi popular or standard.
One states, “Primarily because it is customary to do so, we 1@&n a version of the An-
drew benchmark” [Adya et al. 2002]. Six others gave no exptaason for running the
benchmark. The remaining three papers stated that the eantklas representative of a
user or software developer workload.

Running a benchmark because is it popular or a standard danrdeders compare
results across papers. Unfortunately, this benchmark énsesral deficiencies. One paper
states that “such Andrew benchmark results do not reflechbistie workload.” [Adya
et al. 2002]. Another paper comments that because of thedad¢lO performed, the
benchmark “will tend to understate the difference betwdtnmatives.” [Kim et al. 2002].
One paper describes that they “modified the benchmark be¢hasd 990 benchmark does
not generate much 1/O activity by todays standards.” [Seti. 2002]. Finally, one paper
describes the use of the Andrew benchmark, and how most expdests are satisfied
from the cache. “The Andrew Benchmark has been criticized&ing old benchmark,
with results that are not meaningful to modern systems. #rggied that the workload
being tested is not realistic for most users. Furthermorigiral Andrew Benchmark
used a source tree which is too small to produce meaningsultseon modern systems
[citation removed]. However, as we stated above, the Beacksremphasis on small file
performance is still relevant to modern systems. We modifiedAndrew Benchmark to
use a Linux 2.6.14 source tree [...]. Unfortunately, evetinthis larger source tree, most
of the data by the benchmark can be kept in the OSs page calcb@nly phase where file
system performance has a significant impact is the copy pH&éear et al. 2007].

It seems that researchers seem to be aware of the benchmiekbacks, but still use
it because it has become a “standard,” because that is wiwtaite accustomed to, or
because it is something that other researchers are aceegstiomlt is unfortunate that an
inadequate benchmark has achieved this status, and we tretgetietter option will soon
take its place. We believe that FileBench (see Section Jfifpisising.

7.4 TPC

The Transaction Processing Performance Council (TPC)nstaprofit corporation founded
to define transaction processing and database benchmatke alisseminate objective,

verifiable TPC performance data to the industry” [TransattProcessing Performance
Council 2005]. The organization has strict guidelines athmw benchmarks are run, re-

quires full results and configurations to be submitted tarthand audits the results to

validate them. To certify benchmark results, companiestrhage auditors who are ac-

credited by the TPC board standing by throughout the expisn Whereas this sort of

requirement is desirable in a commercial environment, iitaspractical for academic pa-

pers. Therefore, the benchmarks are used without the guidelines attached to them

by the TPC. There are four TPC benchmarks currently in usééylatabase community

(TPC-App, TPC-C, TPC-E, and TPC-H). Here we only descrilose¢hthat were used in

the surveyed papers: TPC-B, TPC-C, TPC-D, TPC-H, and TPC-W.
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TPC-B. This benchmark has been obsolete since 1995 because it emedeoo sim-
plistic, but was used in one of the surveyed papers in 20Cb}rrkaran et al. 2005]. An-
other paper [Denehy et al. 2005] created a benchmark modétedthis workload. The
benchmark is designed to stress-test the core of a datajsieensdoy having several bench-
mark programs simultaneously submit transactions of daityge as fast as possible. The
metric reported is transactions per second.

TPC-C. Created in 1992, this benchmark and adds some complexitywhs lacking
in older TPC benchmarks, namely TPC-A and TPC-B. It is a datsive benchmark
portraying the activity of a wholesale supplier where a gdapan of users executes trans-
actions against a database. The supplier has a number dioveses with stock, and deals
with orders and payments. Five different transaction tygresused which are either exe-
cuted immediately or set to be deferred. The database csm#ie types of tables with
various record and population sizes. The performance oetported is transactions per
minute for TPC-C (tpmC).

TPC-C was used in eight of the surveyed papers [Zhou et all;2Bé@rkar et al. 2003;
Radkov et al. 2004; Huang and Chiueh 2001; Thereska et ail; 20§ et al. 2002; Abd-
El-Malek et al. 2005; Wachs et al. 2007]. In addition, onegygplightingale et al. 2006]
used an implementation of TPC-C created by the Open Soureel@®nent Lab (OSDL,
which was merged into The Linux Foundation in January 200/ OSDL has developed
implementations of several TPC benchmarks [OSDL 2007]. -TP€ being replaced by
TPC-E, which is designed to be representative of currenklwads and hardware, is less
expensive to run because of more practical storage reqaitesnand have results that are
less dependent on hardware and software configurations.

TPC-D. This benchmark was the precursor to TPC-H (explained naxt), has been
obsolete since 1999. This is because TPC-D was benchmabskiihgad-hoc queries as
well as business support and reporting, and could not dodmehuately at the same time.
TPC-D was splitinto TPC-H (ad-hoc queries) and TPC-R (lessrsupport and reporting).

TPC-H. The workload for this benchmark consists of executing ad-dueeries against
a database and performing concurrent data modificationsheR#éan being only data-
intensive like TPC-C, this benchmark exercises a largetiqgoof a database system. It
uses queries and data that are relevant to the database catyniine benchmark exam-
ines large volumes of data, executes queries with a highegagfrcomplexity, and uses the
data to give answers to critical business questions (dgalith issues such as supply and
demand, profit and revenue, and customer satisfaction) p&Hermance metric reported
is called the TPC-H Composite Query-per-Hour Performanetrigl (QphH@Size), and
reflects multiple aspects of the capability of the systemrtxgss queries including the
database size, query processing power and throughputb&hishmark was used in three
of the surveyed papers [Wachs et al. 2007; Radkov et al. 280idy et al. 2004].

TPC-W. This benchmark was meant to recreate the workload seen intamét com-
merce environment. This benchmark provides little insigétause it is overly complex,
difficult to analyze, and is does not recreate the behavispetific applications [Schmidt
et al. 2001]. TPC-W was used in one of the surveyed papersigiatal. 2005], but was
declared obsolete by TPC approximately 6 months before il 2005).

Using a benchmark that is highly regarded and monitored yuacil of professionals
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from the database community certainly adds to its credjbilihe benchmarks are kept
up-to-date with new version releases, and when serioudgarsbare found with a bench-
mark, it is declared obsolete. However, none of the papeatsubed the benchmark had
their results audited, and most, if not all, did not run thadiemark according to the speci-
fications. The benchmarks are kept up-to-date with new eergleases, and when serious
problems are found with a benchmark, it is declared obsoketdrawback of using TPC
benchmarks for performance analysis is that they utilizatalthse system, which intro-
duces extra complexity. This makes results less compalsdiigeen papers and makes
the benchmark more difficult to set up. Several papers omtagsé traces of the work-
load instead (see Section 8), and one paper [Lumb et al. 23@2] a synthetic benchmark
whose workload was shown to be similar to disk traces of a d&iaft SQL server run-
ning TPC-C. Additionally, while most papers specified théabase that was used for the
experiment, barely any tuning parameters were specifiatinane specified the database
table layout, which can have dramatic effects on TPC bendhpeformance. Although
databases are known to have many tuning parameters, onegpapéfied only two, while
others specified only one or none. Some may have used thdtdsftings since they may
be less familiar with database systems than file or storagteis\s, but one paper [Sarkar
et al. 2003] specified that the “database settings were fineetfor performance” without
indicating the exact settings.

7.5 SPEC

The Standard Performance Evaluation Corporation (SPE&$, fmunded in 1988 by a
small number of workstation vendors with the aim of creatieaglistic, standardized per-
formance tests. SPEC has grown to become a successfulparfoe standardization body
with more than 60 member companies [SPEC 2005b].

SFS.The SPEC SFS benchmark [SPEC 2001; Robinson 1999] meaberg®itfor-
mance of NFSv2 and v3 servers. It is the official benchmarkrieasuring NFS server
throughput and response time. One of the surveyed papeag§8pcchia and Zadok 2002]
used a precursor to this benchmark, created in 1989, cal&BYONE [Shein et al. 1989]
(not created by SPEC). NFSSTONE performs a series of 45,%28yfstem operations,
mostly executing system calls, to measure how many opesagier second an NFS server
can sustain. The benchmark performs a mix of operationad@e to show typical NFS
access patterns [Sandberg et al. 1985]: 53%6KUPs, 32%READS, 7.5%READLINKS
(symlink traversal), 3.2%VRITES, 2.3%GETATTRS, and 1.4%REATES. This benchmark
performs these operations as fast as it can and then reperts/erage number of opera-
tions performed per second, or NFSSTONES. The problemsthigtbenchmark are that
it only uses one client so the server is not always saturédteelied on the client's NFS
implementation, and the file sizes and block sizes were radisti.

Another benchmark, called nhfsstone was developed in 198%hbato Systems, Inc.
It was similar to NFSSTONE except that instead of the cliemxiscuting system calls to
communicate with the server, they used packets createdebysr-space program. This
reduced the dependency on the client, but did not elimingdbecause the client’s behavior
still depended on the kernel of the machine it was running on.

LADDIS [Watson and Nelson 1992; Wittle and Keith 1993], wasated in 1992 by a
group of engineers from various companies, and was furteeeldped when SPEC took
the project over (this was called SFS 1.0). LADDIS solved safithe deficiencies in the
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earlier benchmarks by implementing the NFS protocol in4sgp@ce, improving the opera-
tion mix, allowing multiple clients to generate load on tleev@r simultaneously, providing

a consistent method for running the benchmark, and portiedpenchmark to several sys-
tems. Like the previous benchmarks, given a requested loadgured in ops/sec), LAD-

DIS generates an increasing load of operations and meath@essponse time until the

server is saturated. This is the maximum sustained loadleaterver can handle under
this requested load. As the requested load increases,nespione diminishes. The peak
throughput is reported.

LADDIS used an outdated workload, and only supported NFS«&2 ODP (no support
for NFSv3 or TCP). SFS 2.0 fixed these shortcomings, but abatgorithms dealing with
request-rate regulation, I/O access, and the file set weiredfto be defective. SPEC SFS
3.0 fixed the latter, and updated some important featurdsasithe time measurement.

The SFS 3.0 benchmark is run by starting the script on alhtdi¢one will be the main
client and direct the others). The number of load-genegginocesses, the requested load
for each run, and the amount of read-ahead and write-beh@dpecified. For each re-
guested load, SFS reports the average response time. Toréirep graph with at least 10
requested loads on the x-axis, and their correspondingnsstimes on the y-axis.

SPEC SFS was used by two of the surveyed papers, one of whiatorapliant with
SPEC standards [Eisler et al. 2007], and one in which it waslkear [Anderson et al.
2000]. In addition, one paper used a variant of SFS [Pattees@l. 2002], but did not
specify how it varied. One issue with SFS is that the numbeysfems that can be tested
is limited to those that speak the NFSv2 and NFSv3 protoc®IsS cannot test changes
to NFS clients, and cannot be used to compare an NFS systénawitstem that speaks
another protocol. Whereas this benchmark is very usefutdompanies that sell filers, its
use is limited in the research community. This, combinedth e fact that the benchmark
is not free (it currently costs $900, or $450 for non-profiealucational institutions), has
probably impeded its widespread use in the surveyed papers.

It is of interest to note that the operation mix for the benahkris fixed. This is good
because it standardizes the results more, but also bad seettae operation mix can be-
come outdated and may not be appropriate for all settingmeSuave claimed that SFS
does not resemble any NFS workload they have observed, ah@dalch NFS trace that
they examined had unique characteristics, raising thetigumesf whether one can con-
struct a standard workload [Zhu et al. 2005]. One can chamgeperations mix for SFS,
SO in some sense it can be used as a workload generator. Howeveefault, standard
operations mix must be used to report any standard resaltsdm be compared with other
systems. It seems that this may be the end for the SFS benkhnegause NFSv4 is al-
ready being deployed, and SPEC has not stated any plang&sesh new version of SFS.
In addition, Spencer Shepler, one of the chairs of the NF&#IWorking Group, has
stated that SPEC SFS is “unlikely to be extended to suppo8WF and that FileBench
(see Section 10) will probably be used instead [Shepler RO05

SDM. The SPEC SDM benchmarking suite [SPEC 2004] was made in 199 pr-
duces a workload that simulates a software development@mwient with a large number
of users. It contains two sub-benchmarks, 057.SDET andk@gibusl, both of which
feed randomly ordered scripts to the shell with commandsttileke, cp, diff , grep ,
man, mkdir , spell , etc. Both use a large number of concurrent processes taaene
significant file system activity.
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The measured metric is the number of scripts completed per. One script is gen-
erated for each “user” before the timing begins, and eaclagu separate subtasks exe-
cuted in a random order. Each user is then given a home dietttat is populated with
the appropriate directory tree and files. A shell is startadefich user which uses its own
execution script. The timer is stopped when all scripts lerapleted execution.

There are two main differences between these two benchofarks Kenbus simulates
users typing characters at a rate of three characters pemdas opposed to SDET which
reads as fast as possible. Second, the command set used hiSBIot richer and many
of the commands do a lot more work than in Kenbus.

The SDET benchmark was used in two surveyed papers [Ng e0@R; Seltzer et al.
2000] to measure file system performance, but not all commardcuted by the bench-
mark exercise the file system. It is meant to measure the ipegioce of the system as a
whole, and not any particular subsystem. In addition, theheark description states that
it exercises themp directories heavily, which means that either the benchmasds to
be changed, or the file system being tested must be mountbd agdtem disk. However,
the benchmark does give a reasonable idea of how a file systardwaffect everyday
workloads. This benchmark is currently being updated armking called SMT (System
MultiTasking) [SPEC 2003], with the main goal of ensuringtthll systems perform the
same amount of work regardless of configuration. However3NT description has not
been updated since 2003, so it is unknown as to whether ot wit be deployed.

Viewperf. The SPECviewperf benchmark [SPEC 2007] is designed to me#se per-
formance of a graphics subsystem, and was used in one of thieysd research pa-
pers [Gniady et al. 2004]. However, we will not delve intostlhienchmark’s details be-
cause it is inappropriate to use it as a file system benchraark.exercises many parts of
the OS other than the file system.

Web99.The SPECweb99 benchmark [SPEC 2005a], replaced by SPEOG&ha
2005, is used for evaluating the performance of Web servénse of the surveyed re-
search papers [Nightingale et al. 2006] used it. Its worttisacomprised of dynamic and
staticGET operations, as well asosToperations. We omit further discussion because it is
a Web server benchmark, and was used by the surveyed papedifically measure their
file system using a network-intensive workload.

7.6 SPC

The Storage Performance Council (SPC) [SPC 2007] develepshmarks focusing on
storage subsystems. Its goal is to have more vendors usstipditandard benchmarks,
and publish those results in a standard way. The councilistsref several major vendors
in the storage industry, as well as some academic institsitioThe SPC currently has
two benchmarks available to its members: SPC-1 and SPC-ghedevere used in the
surveyed papers, but are clearly noteworthy.

SPC-1. This benchmark’s workload is designed to perform typicaldiions of business-
critical applications. The workload is comprised of predoately random I/O operations,
and performs both queries and update operations. This tiyperkload is typical of on-
line transaction processing (OLTP) systems, databasersgsor mail server applications.
SPC-1 is designed to accurately measure performance atelgeiformance on both di-
rect attach or network storage subsystems. It includes tiess.
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The first test phase, called “Primary Metrics,” has threesglsa In the first, throughput
sustainability is tested for three hours at steady state. sSEltond phase lasts for ten min-
utes, and tests the maximum attainable throughputin I/@sq@®nd. The third phase lasts
fifty minutes, and maps the relationship between respomsedind throughput by measur-
ing latencies at various load levels, defined as percentaighe throughput achieved in
the previous phase. The third phase also determines thamverage response time of
a lightly-loaded storage configuration.

The second test was designed to prove that the maximum Ii@stthroughput results
that were determined in the first test are repeatable anddepible. It does this by running
similar but shorter workloads as the first test to collectshme metrics. In the third and
final test, SPC-1 demonstrates that the system providevolatite and persistent data
storage. It does this by writing random data to random locetiover the total capacity of
the storage system for at least ten minutes. The writes acgded in a log. The system is
shut down, and caches that employ battery backup are flushedgtied. The system is
the restarted, and the written data is verified.

SPC-2.This benchmark is characterized by a predominantly se¢plemorkload (in
contrast to SPC-1's random workload). The workload is ideghto demonstrate the per-
formance of business-critical applications that requargé-scale, sequential data transfers.
Such applications include large file processing (scientibimputing, large-scale financial
processing), large database queries (data mining, bssingsligence), and on-demand
video. SPC-2 includes four tests and it measures the thpugh

The first test checks data persistence, similar to the thstldf SPC-1. The second test
measures large file processing. It has three phases (wiiyeread-write, read-only), each
consisting of two run sequences, each composed of five rhimg/(tuns in total). Each
run consists of a certain sized transfer with a certain nurobstreams. The third test is
the “large database query test,” which has two phases (K®#ansfer size and 64 KiB
transfer size). Each phase consists of two run sequenagfitstanding requests and one
outstanding request), and each sequence consists of fisgvhare the number of streams
is varied (ten runs total). The fourth and final test is thedao on demand delivery test,”
in which several streams of data are transferred.

Since the Storage Performance Council has many prominesige vendors as mem-
bers, it is likely that its benchmarks will be widely used maustry. However, their popu-
larity in academia is yet to be seen, as the benchmarks arentlyronly available to SPC
members, or for $500 for non-member academic instituti@fsourse, academic institu-
tions will probably not follow all of the strict benchmark igielines and pay the expensive
result filing fees, but the benchmarks would still allow farogl comparisons.

7.7 NetNews

The NetNews benchmark [Swartz 1996], created in 1996, i®H stript that performs a
small-file workload comparable to that which is seen on a UBEMetNews server. It
performs some setup work, and then executes the followiragtphhases multiple times:

(1) Unbatch- Measures the receiving and storing of new articles. Enalagh is used
to ensure that all caches are flushed.

(2) Batch- Measures the sending of backlogged articles to other. sifaticles are
batched on every third pass to reduce the runtime of the lmeady but they should be
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large enough so they will not be cached when they are re-used.

(3) Expire- Measures the removal of “expired” articles. Since artiileestamps are
not relevant in a benchmark setting, the number of histotyiesis recorded after each
unbatchphase. This information is used to expire articles from nmbag some number of
previous passes. The list of articles to be deleted is wrtibeone file while the modified
history file is written to another.

One of the surveyed papers [Seltzer et al. 2000] used thishmeark without the Batch
phase to analyze performance. It is a good benchmark in thgedhat it is meta-data
intensive, and stresses the file system (given a large eneadtioad). However, while
the data size used in the surveyed paper was considered hyttiars to be large (270MB
for theunbatchphase, and 250MB for thexpirephase), it is much smaller than sizes seen
in the real world. The paper states that “two years ago, anls feed could exceed 2.5
GB of data, or 750,000 articles per day. Anecdotal evidenggasts that a full news feed
today is 15—-20 GB per day.” This shows how a static workloadfl 996 is not realistic
just four years later. In addition to the unrealistic woikibsize, a USENET NetNews
server workload is not very common these days, and it may fiieudi to extrapolate
results from this benchmark to applications that more peopk.

7.8 Other Macro-Benchmarks

This section describes two infrequently used macro-bemcksthat appeared in the sur-
veyed research papers.

NetBench and dbenctiNetBench [VeriTest 2002] is a benchmark used to measure the
performance of file servers. It uses a network of PCs to géadita 1/0 requests to a
file server. According to the dbench README file [A. TridgeB®d9], NetBench’s main
drawback is that properly running the benchmark requiregantith 60-150 PCs running
Windows, connected with switched fast Ethernet, and a ligth-server. It also states
that since the benchmark is “very fussy,” the machines shbeal personally monitored.
Because of these factors, this benchmark is rarely usedlewsthe corporate world.

Dbench is an open-source program that runs on Linux machiméproduces the same
file system load as NetBench would on a Samba server but withaking any networking
calls. It was used in one surveyed paper to measure perf@e{&thmuck and Haskin
2002]. The metrics reported by dbench are true throughpditla® throughput expected
on a Win9X machine.

Because there is no source code or documentation for NetBeves were limited to
analyzing the dbench source code. The dbench program is ithrone parameter—the
number of clients to simulate. It begins by creating a chilolcgss for each client. There
is a file that uses commands from a Windows trace of NetBenblthaeach child process
reads one line at a time. The benchmark executes the Linuxagaot of each Windows
command from the trace, and the file is processed repeatedtgri minutes. The main
process is signaled every second to calculate and prinbtbaghput up to that point, and
to signal the child processes to stop when the benchmarleis dte first two minutes of
the run is a warm-up period, and statistics collected dutiigtime are kept separate from
statistics collected during the remainder of the run.

The main question with dbench is how closely it approxim&detBench. There are
three problems that we have discovered. First, there is eetotone correspondence be-
tween Windows and Linux operations, and the file systemselgtiound on each of these
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OSs are quite different, so it is unknown how accurate thestedion is. Second, Net-

Bench has each client running on a separate machine, whilexltias the main process
and all the child processes running on the same machine. ddedacomputation needed
for all of the process management plus the activities of @asbess may affect the results.
In addition, if there are many concurrent processes, thetimaark may be analyzing the
performance of other subsystems, such as the scheduleg,thraor the file system. Third,
dbench processes the trace file repeatedly and does notleotisiings. The source of

the trace file is not clear, and so it is unknown how well therapens in the trace reflect

the NetBench workload. Caching of the trace file may alsocatige results since it is

processed multiple times by several clients on the sameimach

8. REPLAYING TRACES

Traces are logs of operations that are collected, and lafdayed to generate the same
workload (if done correctly). They have the same goal as ov@enchmarks have (see
Section 7): to produce a workload which represents a realdnemvironment. However,
although it may be uncertain whether or not a macro-benckswaaceeds at this, a trace
will definitely recreate the workload that was traced if iceptured and played back cor-
rectly. One must ensure, however, that the captured wodkibeepresentative of the sys-
tem’s intended real-world environment. Nineteen of theveyed papers used traces as
part of their performance analysis [Adya et al. 2002; Sigathet al. 2004; Nightingale
and Flinn 2004; Weil et al. 2006; Rowstron and Druschel 208faci-Dusseau et al.
2003; Zhang et al. 2002; Lu et al. 2002; Lumb et al. 2003; Difaitic et al. 2003; Flinn
et al. 2003; Sivathanu et al. 2004; Schindler et al. 2004iaTet al. 2004; Weddle et al.
2007; Peterson et al. 2007; Tian et al. 2007; Prabhakardn20@b; Tolia et al. 2003].

Some use traces of machines running macro-benchmarks su€R@-C [Dimitrije-
vic et al. 2003; Zhang et al. 2002], TPC-H [Schindler et al0£]) or compile bench-
marks [Weil et al. 2006]. These traces differ from the norrthiat they are traces of a syn-
thetic workload rather than a real-world environment. lifglear why a trace of a compile
benchmark was used, rather than running the compile benghitsalf. However, since
the actual TPC benchmarks require a database system andatiaecomplicated setups,
papers may opt to use traces of the TPC benchmark insteadevdowt is important to
replay the trace in a similar environment as where the trage gathered. For example,
one paper [Dimitrijevic et al. 2003] used a trace of a TPC hat tised a file-system-based
database, but replayed it in an environment that bypassdiddtsystem to access the block
device directly. For more information on TPC benchmarks,Section 7.4.

There are four problem areas with traces today, described tie capture method, the
replay method, trace realism, and trace availability.

Capture methodThere is no accepted way to capture traces, and this can hecesf
confusion. Traces can be captured at the system call, VE®poriang, and driver levels.

The most popular way is to capture traces at the systemesadl primarily because it
is easy and the system call API is portable [W. Akkerman 20@2mmert and Satya-
narayanan 1994; Ousterhout et al. 1985]. One benefit of daptat the system-call level
is that it does not differentiate between requests thatatisfied from the cache and those
that are not. This allows one to test changes in cachingipsliAn important drawback
of capturing at the system call level is that memory-mappgerations cannot be cap-
tured. Traces captured at the VFS level contain cached andgtached requests, as well
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as memory-mapped requests. However, VFS tracer portaisilimited even between dif-
ferent versions of the same OS. Existing VFS tracers ardedntaifor Linux [Aranya et al.
2004] and Windows NT [Vogels 1999; Roselli et al. 2000].

Network-level traces contain only requests that were nifsed from the cache. Network-
level capturing is only suitable for network file systems. tiark packet traces can be
collected using specialized devices or software toolstitpelump Specialized tools can
capture and pre-process only the network file systems rkefzdekets [Ellard and Seltzer
2003a; Blaze 1992]. Driver-level traces contain only naeted requests and cannot cor-
relate the requests with the associated meta-data witheng provided or inferring ad-
ditional information. For example, read requests to filearddta and data read requests
cannot be easily distinguished [Ruemmler and Wilkes 1993].

The process by which the trace is captured must be explaameidshould be distributed
along with the trace if others will be using it. In five of thergeyed papers, the authors
captured their own traces, but four of them did not specify tinis was done.

When collecting file system traces for studies, many us@étgaools that are customized
for a single study. These systems are built either in an adraha@nner [Ousterhout et al.
1985; Roselli et al. 2000], modify standard tools [Roselkle2000; Ellard et al. 2003], or
are not well documented in research texts. Their emphasisstudying the characteristics
of file system operations and not on developing a systemateusable infrastructure for
tracing. Often, the traces excluded useful informationdibrers conducting new studies;
information excluded could concern the initial state ofthechines or hardware on which
the traces were collected, some file system operations andtiguments, pathnames, and
more.

Replay methodReplaying a file system trace correctly is not as easy as itapagar.
Before one can start replaying, the trace itself may neectmbdified. Any missing op-
erations have to be guessed so that operations that otigswadceeded do not fail (and
those that failed should not succeed) [Zhu et al. 2005]. kample, files must be created
before they are accessed. In addition, the trace may bedsgpddially or temporally [Zhu
et al. 2005]. For parallel applications, finding inter-natbgendencies and inter-1/O com-
pute times in the trace improves replay correctness [Mestial. 2007]. Once the trace
is ready, the target file system must be prepared. Files teadssumed to exist in the
trace must exist on the file system with at least the size ofafgest offset accessed in
it. This will ensure that the trace can be replayed, but tisalting file system will have
no fragmentation, and will only include files that were aceekin the trace, which is not
realistic. The solution here is to age the file system. Of seuthe aging method should be
described, because the replay will now differ from the aradirun, as well as from replays
that aged the file system differently. There are fewer issiéls preparing block-level
traces for replay on traditional storage devices, sincelbémcesses generally do not have
context associated with them. In this case, missing omeratannot be known, and aging
the storage system will not affect the behavior of the beratfrsince the blocks specified
by the trace will be accessed regardless of the storagensggpeevious state.

It is natural to replay traces at the level the traces wergeutag. However, replaying
file system traces at the system call level makes it impassibleplay high I/O-rate traces
with the same speed as they were captured on the same hardéés because replay-
ing adds overheads associated with system calls (contétdr®s, verifying arguments,
copies between user-space and kernel-space [Anderson260a]). VFS-level replay-
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ing requires kernel-mode development, but can use the tonmally spent on executing
system calls to prefetch and schedule future events [JoakaV. 2005]. Network-level
replaying is popular because it can be done entirely fronuteg-level. Unfortunately, it
is only applicable to network file systems. Driver-levellagpng allows one to control the
physical data position on the disk, and is often done fron-lese!.

Replay speed is an important consideration, and is sulfjsttrhe debate. Some believe
that the trace should be replayed with the original timiradjough none of the surveyed
papers specified that they did this. There are replayingtarich as Buttress [Anderson
et al. 2004], that have been shown to follow timings acclyatéowever, with the advent
of faster machines, it would be unreasonable to replay agr tddce with the same timings.
On the other hand, if the source of the trace was a faster macihimay not be possible to
use the same timings.

There is another school of thought that believes that treetshould be played as fast as
possible, ignoring the timings. Five of the surveyed papisso [Flinn et al. 2003; Tolia
et al. 2004; Peterson et al. 2007; Nightingale and Flinn 2@0dbhakaran et al. 2005].
Any trace replay speed will measure something slightlyedéht than what the original
system’s behavior when the trace was being captured. Howemaying a trace as fast
as possible changes the behavior more than other speedsg do f@ictors such as caching,
read-ahead, and interactions with page write-back and @tynchronous events in the
OS. It assumes an I/O bottleneck, and ignores operatiomdiepeies.

A compromise between using the original timings and igrgptime timings is to play
back the trace with some speedup factor. Three of the sudvegpers [Zhang et al. 2002;
Sivathanu et al. 2004; Weddle et al. 2007] replayed with lle¢horiginal timings as well
as at increased speeds. By doing so they were able to obkereff¢cts of increasing the
pressure on the system. Although this is better than repdpat only one speed, it is not
clear what scaling factors to choose.

We believe that currently the best option is to replay thedras fast as possible and re-
port the average operations per second. However, it isainaciespect dependencies in file
system traces, and not simply run one operation after theroffor example, TBBT [Zhu
et al. 2005] has one replay mode called “conservative drddvich sends out a request
only after all previous operations have completed, andreratalled “FS dependency or-
der,” which applies some file system orderings to the opamat{for example, it will not
write to a file before it has received a reply that the file wasated).

An ideal way of recreating a traced workload would be to figtnalize the think times
using both the hardware and software (e.g., OS, librargsyant programs) specifications
of the system that produced the trace, and then to calibratgirig specifications of the
machine being used to replay the trace. How to do this acalyriatstill an open question,
and the best we can do right now is take the results with a gifesalt.

However replaying is done, the method should be clearlgdtatong with the results.
Of the 19 surveyed papers that utilized tracing for perfaroeanalysis, we found that 15
did not specify the tool used to replay and 11 did not spetiéygdpeed. Not specifying the
replay tool hinders the reader from judging the accuracyhefreplay. For those that did
not specify the speed, one can guess that traces were rdaayast as possible since this
is common and easy, but it is still possible that other tirmingre used.

Realism.Whether or not a trace accurately portrays the intendedwedd environ-
ment is important to consider. One aspect of this problemaises becoming stale. For
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traces whose age we could determine, the average age wasass] with some as old as
11 years. Studies have shown that characteristics sucheasifés, access patterns, file
system size, file types, and directory size distributiorehatvanged over the years [Roselli
et al. 2000; Agrawal et al. 2007].

Additionally, the trace should ideally be of many users exieg similar workloads
(preferably unaware that the trace is being collected sbth&r behavior is not biased).
For example, one of the surveyed papers [Adya et al. 2002] asme-hour—long trace of
one developer as the backbone of their evaluation. Such lsanaple may not accurately
represent a whole population.

Trace availability. Researchers may collect traces themselves, request threotlgi
from other researchers, or obtain them from some third pdwdy makes traces publicly
available. Reusing traces, where appropriate, can engew@mparisons between papers
and allow results to be reproduced. However, traces cannhecmavailable for several
reasons, some of which are discussed here. One surveyed[Pamestron and Druschel
2001] used traces that are available wiep, but the company that captures and hosts the
traces states that they remove traces after seven daysnmaases, those who captured the
traces have moved on and are unavailable. Additionallgestrace files are usually very
large (traces from HP Labs, which are commonly used, can be @8 B), researchers may
not save them for future use. Some traces are even largecfdpmately 1TB, compressed
20-30:1), so even if the authors still have the trace, they msist on transferring it by
shipping a physical disk. To resolve these types of issuases$ should be stored in cen-
tralized, authoritative repositories of traces for all s®uln 2003, SNIA created a technical
working group called IOTTA (I/O Traces, Tools & Analysis) attack this problem. They
have established a world-wide trace repository, with svieaces in compatible formats
and with all of the necessary tools [SNIA 2007]. There are &lgo smaller repositories
hosted by universities [LASS 2006; PEL 2001].

Privacy and anonymization is a concern when collecting astlilduting traces, but it
should be done while not harming the usability of the tracEer example, one could
encrypt sensitive fields, each with a different encrypties.kDifferent mappings for each
field remove the possibility of correlation between relafiedds. For example, UID =
0 and GID = 0 usually occur together in traces, but this cateoeasily inferred from
the anonymized traces in which the two fields have been etextyysing different keys.
Keys could be given out in private to decrypt certain fielddagired [Aranya et al. 2004].
Although this does not hide all important information, sashthe number of users on the
system, it should provide enough privacy for most scenarios

9. MICRO-BENCHMARKS

In this section we describe the micro-benchmarks that weeel in the surveyed research
papers, and reflect on their positive qualities, drawbaakd,how appropriate they were in
the context of the papers that they appeared in.

In contrast to the macro-benchmarks described in Sectioniéro-benchmark work-
loads usually consist of a small number of types of operatard serve to highlight some
specific aspect of the file system.

We discuss Bonnie and Bonnie++ in Section 9.1, the Spritelvaarks in Section 9.2,
ad-hoc micro-benchmarks in Section 9.3, and using systéitiegtto create workloads in
Section 9.4.
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9.1 Bonnie and Bonnie++

Bonnie, developed in 1990, performs a series of tests onglesfilte, which is 100KB
by default [Bray 1996]. For each test, Bonnie reports the Inemnof bytes processed per
elapsed second, the number of bytes processed per CPU sacwhthe percent of CPU
usage (user and system). The tests are:

Sequential outputThe file is created one character at a time, and then recreated
8KB chunk at a time. Each chunk is then read, dirtied, anditemr

Sequential inputThe file is read once one character at a time, and then agaichomé
at atime.

Random seeksA number of processes seek to random locations in the file @ad a
chunk of data. The chunk is modified and rewritten 10% of theeti The documentation
states that the default number of processes is four, but we tlzecked the source code
and only three are created (this shows the benefit of havieg-epurce benchmarks). The
default number of seeks for each process is 4,000 and is ss®vefal hard-coded values.

Even though this is a fairly well-known benchmark [Bryanaet2001], of all the papers
that we surveyed only one of them [Zadok et al. 2001] used #reGnust be taken to
ensure that the working file size is larger than the amount @firy on the system so
that not all read requests are satisfied from the page cache.Bdnnie documentation
recommends using a file size that is at least 4 times biggertth@amount of available
memory. However, the biggest file size that was used in theeged research paper was
equal to the amount of memory on the machine. The small nuoflpapers using Bonnie
may be due to the three drawbacks it has.

First, unlike Postmark (see Section 7.1), Bonnie does netausingle pseudo-random
number generator for all OSs. This injects some variancevdst benchmarks run on
different OSs, and results may not be comparable.

Second, the options are not parameterized [Bryant et all]200f all of the values
mentioned above, only the file size is configurable from thamand line. The rest of the
values are hard-coded in the program. In addition, Bonnisdwt allow the workload
to be fully customized. A mix of sequential and random acégs®t possible, and the
number of writes can never exceed the number of reads (beeauste is done only after
a chunk is read and modified).

Third, reading and writing one character at a time testsitivarly call throughput more
than the file system because the function that Bonnie qgdis () uses buffering.

Bonnie++ [Coker 2001] was created in 2000 and used in oneedfuhveyed papers [Pe-
terson et al. 2005]. It differs from Bonnie in three ways.sEiit is written in C++ rather
than C. Second, it uses multiple files to allow accessing sittathat are larger than 2GB.
Third, it adds several new tests that benchmark the perfocmafcreate |, stat , and
unlink . Although it adds some useful features to Bonnie, Bonnidithsaffers from the
same three drawbacks of Bonnie.

9.2 Sprite LFS

Two micro-benchmarks from the 1992 Sprite LFS file systenmsgdolum 1992] are some-
times used in research papers for performance analysidaihe file benchmark and the
small file benchmark.
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Sprite LFS Large File Benchmark.hree papers [Mazieres et al. 1999; Wang et al.
1999; Wang et al. 2002] included this benchmark in their genfance evaluation. The
benchmark has five phases:

(1) Create a 100MB file using sequential writes.
(2) Reads the file sequentially.

(3) Writes 100MB randomly to the existing file.
(4) Reads 100MB randomly from the file.

(5) Reads the file sequentially.

The most apparent fault with this benchmark is that it usesaalfsize file and therefore
does not scale. It also uses thedom library routine rather than having a built-in pseudo-
random number generator (as Postmark does—see SectiowlTicdt) may make results
incomparable across machines with different implemeoreti

Another fault is that the caches are not cleaned betweenpese, and so some humber
of operations in a given phase may be serviced from the cabb@Mmount would actually
depend on the pseudo-random number generator for phases4 &mther emphasizing
the need for a common generator). However, two of the papdrspmkcify that caches
were cleaned after each write phase. It should be notedah#td random read phase, the
benchmark ends up reading the entire file, and so the latdrtbysqphase depends on the
file system’s read-ahead algorithm (and the pseudo-randwoniar generator).

One of the good points about the benchmark is that each staigesid separately, with a
high level of accuracy, and only relevant portions of theecartk timed. For example, when
performing random writes, it first generates the random o(tleough it uses a poorly-
designed algorithm which i©(N?) in the worst case), and then starts timing the writes.

Sprite LFS Small File Benchmarkhis benchmark was used in six papers [Wang et al.
2002; Denehy et al. 2005; Mazieres et al. 1999; Kaminsky. @0413; Li et al. 2004; Wang
et al. 1999]. It has three phases:

(1) Creating 10,000 1KB files by creating and opening a fildtimg 1KB of data, and
closing the file.

(2) Reading the files.
(3) Deleting the files.

Some papers varied the number of files and their sizes, andpedified that the caches
were flushed after the write phase. We could not obtain thecearode for this benchmark,
so it seems that each author may rewrite it because it is splasinThis would make it
difficult to compare results across papers because the esgode may be different. To
show this, we have developed five versions of the code:

LFs-sH1. A bash script that creates the files by coping data fr®v/zero  using the
dd program (with a block size of 1 byte, and count of 1,024), sethe files usingat ,
and deletes them withm.

LFS-sH2. Similar toLFs-SH1, butdd uses a 1,024-byte block size, and a count of 1.
LFS-sH3. The same asFs-SH1, but usegp instead ofdd to create the files.

LFs-C. A C implementation.

LFs-PL. A Perl implementation.
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Fig. 6. Time taken to execute various versions of the Spiit& kmall file benchmark. Note that error bars are
shown, but are small and difficult to see.

The source code for all five versions is availablenatw.fsl.cs.sunysb.edu/
project-fsbench.html . The results, shown in Figure 6, clearly demonstrate that
different implementations yield significantly differerdsults. The threbash script ver-
sions are much slower than the others because every opematibe benchmark forks a
new process. In addition, all of the implementations exéaptFs-sH3 have insignificant
wait time components, showing that file system activity isimal.

9.3 Ad-Hoc Micro-Benchmarks

Until now, we have been discussing widely-available beratsin isolation. In contrast,
ad-hoc benchmarks are written by the authors for in-house Us this section, we de-
scribe ad-hoc micro-benchmarks in the context of the papatsthey appear in, since the
benchmarks alone are usually not very interesting. 62 oflfi surveyed research pa-
pers used ad-hoc micro-benchmarks for at least one of thpérenents (191 total ad-hoc
micro-benchmarks).

These benchmarks all have a general drawback. Becausertheptamade available
to other researchers, they are not reproducible. Even yféine described in detail (which
is usually not the case), another implementation will delyadiffer (see Section 9.2 for
experimental evidence). In addition, since these bencksrare not widely used, they
are not tested as much as widely available benchmarks, @nefthe are more prone to
bugs. One good aspect about these benchmarks is that we dtasedrthat usually some
reasoning behind the benchmark is described.

Because micro-benchmarks test the performance of a filersyshder very specific cir-
cumstances, they should not be used alone to describe ypagmamance characteristics.
The only exception to this rule is if a minor change is madeams code and there is a
clear explanation as to why no other execution paths aretafie

We have identified three reasonable ways of using microfreacks. The first accept-
able way of using ad-hoc micro-benchmarks is to better wstded the results of other
benchmarks. For example, one paper [Ng et al. 2002] meashiectthroughput of reads
and writes for sequential, random, and identical block asder this purpose. Because the
results are not meant to be compared across papers, theloefiyiity is no longer much
of an issue. Sequential access may show the best case betthesshort disk head seeks
and predictable nature, which is where read-ahead andtphdig shine. The random read
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micro-benchmark is generally used to measure read thraugh scenario where there
is no observable access pattern and disk head seeks are corimis type of behavior
has been observed in database workloads. The random a$fieebenchmark inherently
inhibits its reproducibility across machines, as discdgseSection 7.1. Since this paper
involved network storage, repeatedly reading from the shioek gives the time for is-
suing a request over the network that results in a cache hi. r&ason for writing to the
same block, however, was not explained. Neverthelessgusirhoc micro-benchmarks
to explain other results is a good technique. Another pdpeet al. 2000] used the read
phases of the LFS benchmarks to examine performance batken

A second method of using these benchmarks is to use sevehalamhicro-benchmarks
to analyze the performance of a variety of operations, d% @igpers did. This can provide
a sense of how the system would perform compared to someita$el commonly used
operations, and may allow readers to estimate the overlieadther workloads.

The third way is to use the micro-benchmark to isolate a igeaspect of the system.
For example, a tracing file system used an ad-hoc micro-meadhto exercise the file
system by producing large traces that general-purposeinesaks such as Postmark could
not produce, thereby showing worst-case performance ffaa&thal. 2004]. Another used
a simple sequential read benchmark to illustrate diffeRIAC behavior [Magoutis et al.
2003]. Others used ad-hoc micro-benchmarks to show howgtera behaves under those
specific conditions. Most of these papers focused on the rkeaiet, and stat operations,
varying the access patterns, the number of threads, andithber of files. However, most
did not use the micro-benchmarks to show worst-case behavio

In addition, ad-hoc micro-benchmarks can be used in thelimghases of benchmark-
ing to explore the behavior of a system. This can provideuwlsgdita about code that
requires optimization or to make decisions about what aatdit benchmarks would most
effectively show the system’s behavior.

9.4 System Utilities

Some papers use standard utilities to create workloadsadsif creating workloads from
scratch, as discussed in Section 9.3. Some examples of iankch of this type that were
used in the surveyed papers are:

—wc [Meter and Gao 2000grep [Meter and Gao 2000; Fraser and Chang 2003]: se-
quentially reading from one or more files.

—cp [Zadok et al. 2001; Padioleau and Ridoux 2003; Schindlel. &092; Santry et al.
1999; Muniswamy-Reddy et al. 2004]: sequentially readingifone file while copying
to another.

—diff  [Schindler et al. 2002]: sequentially reading two files anthparing them.

—tar [Leeetal.1999; Andersonetal. 2000%ip [DeBergalis etal. 2003]: sequentially
reading from a file and appending to a set of files while conagriPU.

Using these utilities is slightly better than creating ad:fbenchmarks because these
utilities are widely-available and there is no misunderdtag about what the benchmark
does. However, none of the papers specified what versionviees using, which could
lead to some (possibly minor) changes in workloads. For @tendifferent versions of
grep use different I/O strategies. However, researchers caity esggecify tool version
and eliminate all ambiguity. However, an important flaw imngsthese utilities is that the
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benchmarks do not scale, and depend on the input files whichadrstandardized.

10. CONFIGURABLE WORKLOAD GENERATORS

Configurable workload generators generally have lowerlfidigr when compared to creat-
ing custom benchmarks, but they require less setup timer@ngsaally more reproducible.
In addition, since they are more widely-used and estaldishan ad-hoc benchmarks, it is
likely that they contain fewer bugs. We discuss some of theempopular generators here.

lometer. This workload generator and measurement tool was developbdel in 1998
and originally developed for Windows [OSDL 2004]. lometeasvgiven to the Open
Source Development Lab in 2001, which open-sourced anegadirto other OSs. The
authors claim that it can be configured to emulate the disketwork 1/0 load of any
program or benchmark, and that it can be used to generatelgraynthetic 1/0 loads. It
can generate and measure loads on single or multiple (nleddpsystems. lometer can
be used for measurement and characterization of disk amebrietontroller performance,
bus latency and bandwidth, network throughput to attachiedsl shared bus performance,
and hard drive and network performance.

The parameters for configuring tests include the followithgg run time; the amount of
time to run the benchmark before collecting statistics fulder making sure the system
is in a “steady state”); the number of threads; the numbeaugets (i.e., disks or network
interfaces); the number of outstanding I/O operationsytbekload to run.

The parameters for a thread’s workload include: the peroEmansfers that are a given
size; the ratio of reads to writes; the ratio of random to seqjal accesses; number of
transfers in a burst; time to wait between bursts; the aligminof each 1/O on the disk;
the size of the reply, if any, to each 1/O request. The test imlsludes a large selection of
metrics to use when displaying results, and can save anctlma&ijuration files.

lometer has four qualities not found in many other benchmafkrst, it scales well,
since the user inputs the amount of time the test should ather than the amount of
work to be performed. Second, allowing the system to reashdst state is a good prac-
tice, although it may be more useful to find this point by statal methods rather than
by trusting the user to input a correct time. Third, it allofes configuration files to be
easily distributed and publicized by saving the configarafile so that benchmarks can
be run with exactly the same workloads. Although reseaschan publicize parameters
for other benchmarks, there is no standard format so sonaaners are bound to be left
unreported. Fourth, having a suite that runs multiple testls varying parameters saves
time and reduces errors. However, there are tools such asgilat [Wright et al. 2005]
that can automate benchmarks with greater control (for @@nthe machine can reboot
automatically between runs, run helper scripts, etc.).

A drawback of lometer is that it does not leave enough roonctmtomization. Al-
though it can recreate most commonly-used workloads, badikg the possibilities for
workload specification and performance metrics reduceffexsbility. For example, the
percentage of reads that are random is not sufficient to ithesall read patterns. One read
pattern suggested for testing read-ahead is reading bfomksa file in the following pat-
terns: 1, 51, 101,...; 1, 2, 51, 52, 101, 102,...; 1, 2, 3, 21,58, 101, 102, 103,... [Tang
1995]. Such patterns cannot be recreated with lometer.

Surprisingly, even though lometer has many useful featomy two papers used it [Sarkar
et al. 2003; Yu et al. 2000]. This may be because lometer wablario generate the de-

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.



38 . Avishay Traeger et al.

sired workload, as described above. However, most world@ae fairly straightforward,
so this is less of a factor. More likely, researchers simphymot know about it, or be
familiar with it. This may be why researchers prefer to wtheir own micro-benchmarks
rather than using a workload generator. Furthermore, isdu# seem that the ability to
save configuration files improved the reporting of workloaushe research papers that
used lometer (neither paper fully described their micradbenarks).

Buttress. The goal of Buttress is to issue I/O requests with a high amyyeven when
high throughputs are requested [Anderson et al. 2004]. i$lsportant for Buttress’ trace
replay capability, as well for obtaining accurate intgd-times for its workload generation
capability. Accurate I/O issuing is not present in most tenarks, and the authors show
how important it is to have. The Buttress toolkit issues raad write requests close to their
intended issue time, can achieve close to maximum possibdeghput, and can replay
I/O traces as well as generate synthetic I/O patterns. Seweeresting techniques were
employed to ensure these properties. In addition, the itoislflexible (unlike lometer)
because users can specify their own workloads using a siewgllet-based programming
interface. However, this also makes it more difficult to mghrce benchmarks from other
papers (it is easier to specify simple parameters, as witheter). Two of the surveyed
research papers, both from HP labs, have used this toolkinfiet al. 2003; Lu et al.
2002]. Unfortunately, Buttress is only available by spexaguest from HP.

FileBench. This workload generator from Sun Microsystems [R. McDougald J.
Mauro 2005] is configured using a scripting language. Filetbeincludes scripts that
can generate application-emulating or micro-benchmankisads, and users may write
their own scripts for custom benchmarks. The applicationkeads it currently emulates
are an NFS mail server (similar to Postmark—see Section @.fije server (similar to
SPEC SFS—see Section 7.5), a database server, a Web sadvaryeb proxy.

FileBench also generates several micro-benchmark wadklcgome of which are sim-
ilar to Bonnie (see Section 9.1) or the copy phase of the Amdrenchmark (see Sec-
tion 7.3). In addition to the workloads that come with FileBh, it has several useful
features: (1) workload scripts can easily be reused andghdd, (2) the ability to choose
between multiple threads or multiple processes, (3) mé&oend accurate latency and cy-
cle counts per system call, (4) thread synchronizatiompgm-up and cool-down phases
to measure steady-state activity, (6) configurable dirgattructures, (7) database emula-
tion features (e.g., semaphores, synchronous I/O, etc.).

Only one of the surveyed papers [Gulati et al. 2007] used3€ifeh, possibly because
Filebench was made publicly available only in 2005 on Sejaaind a Linux port was
created soon after. However, it is highly configurable and possible that researchers
will be able to use it for running many of their benchmarks.

Fstress. This workload generator has similar parameters to otheeggars [Andrerson
2002]. One can specify the following: the distributions fibe, directory, and symlink
counts; the maximum directory tree depth; popularity inesses for newly created objects;
file sizes; operation mix; I/O sizes; and load level. Like SPEFS (see Section 7.5),
it only runs over NFSv3, and constructs packets directieathan relying on a client
implementation. However, NFSv3 is currently being repthiog NFSv4, so supporting this
protocol would be necessary to ensure relevance. Like lentbere are limited workload
configuration parameters. Another drawback is that reguarst sent at a steady rate, so
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bursty I/O patterns cannot be simulated. Fstress was ndtinsay of the surveyed papers.

11. BENCHMARKING AUTOMATION

Proper benchmarking is an iterative process for many readarour experience, there are
four primary reasons for this. First, when running a benctinagainst a given configu-
ration, you must run each test a sufficient number of timesaia gonfidence that your
results are accurate. Second, most software does not exastacuum—there is at least
one other related system or a system that serves as a bdselioenparison. In addition to
your own system, you must benchmark the other systems angdarengour performance
to those. Third, benchmarks often expose bugs or ineffigésnia your code, which re-
quire changes. After fixing these bugs (or simply adding nesiures), you must re-run
your benchmarks. Fourth, after doing a fair number of beres) you inevitably run into
unexpected, anomalous, or just interesting results. Ttagxthese results, you often need
to change configuration parameters or measure additiorsaltijies—necessitating addi-
tional iterations of your benchmark. Therefore, it is natuo automate the benchmarking
process from start to finish.

Auto-pilot [Wright et al. 2005] is a suite of tools that we @doped for producing accu-
rate and informative benchmark results. We have used Ailbdfpr over five years, on
dozens of projects. As each project is slightly different, @ontinuously enhanced Auto-
pilot and increased its flexibility for each one. The resslaistable and mature package
that saves days and weeks of repetitive labor on each prdjeto-pilot consists of four
major components: a tool to execute a set of benchmarksideddsy a simple configu-
ration language, a collection of sample shell scripts fer §iystem benchmarking, a data
extraction and analysis tool, and a graphing tool. The aialpol can perform all of the
statistical tests that we described in Section 3.

12. EXPERIMENTAL EVALUATIONS

In this section we describe the methods we used to benchniasyftems to show some
of their qualities. Our goal is to demonstrate some of the mom pitfalls of file system
benchmarks. We describe the file system that we used for tiehbgarks in Section 12.1.
In Section 12.2, we show some of the faults that exist in comynesed benchmarks.

12.1 Slowfs

To reveal some characteristics of various benchmarks, we mmdified the ext2 file sys-
tem to slow down certain operations. We call this file sys&lowfs Rather than calling
the normal function for an operation, we call a new functidriah does the following:

(1) start := getcc() [get current time in CPU cycles]
(2) Calls the original function for the operation
(3) now := getcc()
(4) goal :=now + ((now - start) * 2N) - (now - start)
(5) while (getcc()< goal){ schedule(}
The net effect of this is a slow-down of a factor2f for the operation. The operations

to slow down andV are given as mount-time parameters. For this article weesdbadown
the following operations:
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—read. Reads data from the disk.

—prepare write and commit writeUsed by the file system to write data to disk for the
write system call. We refer to these operations collecfieslwRITE for the remainder
of the article.

—lookup. Takes a directory and a file name, and returns an in-memodeino

If no operation was slowed down, we callekT2. If all of the above operations were
slowed down we call it AL. We experimented with the above three functions because
they are among the most common found in benchmarks. Notehisei/pe of slow-down
exercises the CPU and not I/O, and that a slow-down of a oddatfor is as seen inside the
file system, not by the user (the amount of overhead as sedmehyser varies with each
benchmark). For example, heavy use of the CPU can be found sytems that perform
encryption, compression, or checksumming for integritgdoplicate elimination.

The source code for Slowfs is availablevavw.fsl.cs.sunysb.edu/project-
fsbench.html

12.2 Hiding Overheads
In this section we use Slowfs to prove some of the claims tlegdbhave made in this article.

Compile benchmarkdn our first experiment, we compared Slowfs and ext2 for cenfig
uring and compiling OpenSSH versions 3.5, 3.7, and 3.9. \Wee S®owfs with the read
operation slowed down by several factors. The results asevshn Figure 7. Only the
results for versions 3.5 and 3.7 are shown, because theyeshihw highest overheads. We
chose to slow down the read operation because, as showntinrgé, it is the most time-
consuming operation for this benchmark. Because a comeilelimark is CPU-intensive,
such extraordinary overheads as a factor of 32 on read canmaticed (the factor of 32
comes from settingv to 5, as described in Section 12.1). For all of these grapleshalf-
widths were less than 1.5% of the mean, and@heU % was always more than 99.2%,
whereCPU% = Lmeuserttimesysiem 100 |n the following discussion, we do not in-

timeciapsed

clude user or 1/O times because they were always eithesstatlly indistinguishable or
very close (these two values were not affected by the Slovwefdifications).

For the configure phase, the highest overhead was 2.7% fosezdaime, and 10.1% for
system time (both for version 3.7). For the compile phasehighest overhead was 4.5%
for elapsed time and 59.2% for system time (both for versid).3Although 59.2% is a
noticeable overhead, this can be hidden by only reportiagtapsed time overhead.

We also conducted the same compile benchmarks with slovoagn@ach of the oper-
ations listed in Section 12.1 only by a factor of five. We sldwleem down separately as
well as together. There wam statistical difference between ext2 and any of these slowed
down configurations.

These results clearly show that even with extraordinarayteln critical file system
operations, compile benchmarks show only marginal ovettibacause they are bound by
CPU time spent in user-space. As mentioned in Section 7e3¢¢ficiencies in compile
benchmarks apply to the Andrew benchmark as well.

Postmark.We tested Slowfs with three different Postmark configurai¢described in
Table IV). ThersL configuration is the one we have been using in our laboratargriya
et al. 2004; Wright et al. 2003], thevFs configuration is from the CVFS research pa-
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Fig. 7. Time taken to configure and compile OpenSSH versiohs®d 3.7 on ext2 and on Slowfs with the read
operation slowed down by several factors. Note the diffeseales for the Y-axes. The half-widths were always
less than 1.5% of the mean.

Table IV. Postmark configurations used in our Slowfs experits.

Parameter FSL CVFS CVFS-LARGE
Number of Files 20,000 5,000 5,000
Number of Subdirectorieg 200 50 50

File Sizes 512 bytes—10KB| 512 bytes—10KB| 512-328,072 byteg
Number of Transactions 200,000 20,000 20,000
Operation Ratios equal equal equal

Read Size 4KB 4KB 4KB

Write Size 4KB 4KB 4KB
Buffered 1/10 no no no

per [Soules et al. 2003], antVFS-LARGE is similar to thecVvFs configuration, but we
used the median size of a mailbox on our campus’s large maiéséor the file size. We
used a similar configuration before [Muniswamy-Reddy e2@04], but have updated the
file size. We used Postmark version 1.5, and used Slowfs todbovn each of the opera-
tions separately, as well as together, by a factor of foue fEsults are shown in Figure 8.
The graphs show us two important features of this benchntarkt, if we look at the
EXT2 bar in each graph, we can see how much changing the confansatan effect the
results. The three are very different, and are clearly ingarable £sL takes over 55 times
longer thancvFs, andcVFs-LARGE is still almost twice as long assL). Second, we can
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Fig. 8. Time taken to execute the Postmark benchmark witerabeonfigurations while slowing down various
file system operations using Slowfs. Note the differentecédr the Y-axes.

see that different configurations show the effects of Slawfsrying degrees.

For example, slowing down reads yields an elapsed time eeaefrtof 3.6% forFsL
(16.7% system time), 14.1% farvrs (19.4% system time), and 116% fowFS-LARGE
(2,055% system time) over ext2XT12). We can see that in thevFs configuration, there
is no wait time on the graph. This is because the configuratias so small that the
benchmark finished before the flushing daemon could writaéodisk. cvFs has larger
overheads thamsL because writes are a smaller component of the benchmarksand
reads become a larger componemw.Fs-LARGE has higher overheads than the other two
configurations because it has much larger files, and so thene@ie data to be read. Sim-
ilarly, when all operations are slowed dowaL( ), there is an elapsed time overhead of
12.3% forFsL (85.6% system time), 65.8% farvFs (83.5% system time), and 183% for
CVFS-LARGE (3,177% system time).

Depending on the characteristics of the file system beirtgdes is possible to choose
a configuration that will yield low overheads. Even so, we thed Postmark sufficiently
exercises the file system and shows us meaningful overheddag as the workload is
large enough to produce I/O (i.e., the working set is largantavailable memory and the
benchmark runs for enough time). This is in contrast to thmpmite benchmarks, which
barely show any overheads.
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13. CONCLUSIONS

We have examined a range of file system and storage bencharatkiescribed their posi-
tive and negative qualities, with the hope of furtheringtinelerstanding of how to choose
appropriate benchmarks for performance evaluations. We kane this by surveying
106 file-system and storage-related research papers frefeetisn of recent conferences
and by conducting our own experiments. We also advised ondemehmarks should be
run and how results should be presented. This advice was aumed in our suggested
guidelines (see Section 3).

We suggest that with the current set of available benchm#rksnost accurate method
of conveying afile or storage system'’s performance is bygiaiteast one macro-benchmark
or a trace, as well as several micro-benchmarks. Macrotveadks and traces are in-
tended to give an overall idea of how the system would perfonaer some workload. If
traces are used, then special care must be taken with reghohthey are captured, how
they are replayed, and how closely they resemble the inteneld-world workload. In
addition, micro-benchmarks should be used to help undatstee system’s performance,
test multiple operations to provide a sense of overall parémce, or highlight interesting
features about the system (such as cases where it perforticafzaly well or poor).

Performance evaluations must improve in their descrigtimiwhatthey did, as well as
whythey did it, which is equally important. Explaining the reasg behind one’s actions
is an important principle in research, but seems to be igharesome file system and
storage performance evaluations. Ideally, there shoulgonee analysis of the system’s
expected behavior, and various benchmarks either prouvimtisproving the hypotheses.
This provides more insight into the behavior than just a graptable can.

We believe that the current state of performance evaluatamnseen in the surveyed
research papers is bleak. Computer science is still avelgtyoung field, and the exper-
imental evaluations needs to move further in the directibprecise science. One part of
the solution is that standards clearly need to be raised Willihave to be done both by re-
viewers putting more emphasis on a system’s evaluationbgmesearchers by raising the
bar. Another part of the solution is that researchers nedzbthetter informed. We hope
that this paper, and our continuing work, will help researshunderstand the problems
that exist with file and storage system benchmarking. The &ispect of the solution to
this problem is creating standardized benchmarks, or breadking suites, based on open
discussion among file system and storage researchers.

We believe that future research can help alleviate thetsiméy answering questions
such as:

(1) How can we accurately portray various real-world wodds?

(2) How can we accurately compare results from benchmagkswiere run on different
machines and systems and at different times?

To help answer the first question, we need a method of deterghtmow close two
workloads are to each other. To answer the second, we béetiaveenchmark results can
be normalized for the machine they were run on. In order todsedize benchmarks, we
feel that there is a need to have a group such as the SPC tasl@@land maintain file
system benchmarks, and for the SPC benchmarks to be moré/wiskd by the storage
community. We are currently working on some of these prolslamd there is still much
work to be done, but we hope that with time the situation wilprove.
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The project Web sitevgww.fsl.cs.sunysb.edu/project-fsbench.htmi )
contains the data collected for this survey, our suggestionproper benchmarking tech-
nigues, and the source code and machine configurations aérutbe experiments through-
out the paper.
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