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Cloud computing is becoming increasingly popular as utility computing is being gradually real-
ized. Still, many organizations cannot enjoy the high accessibility, availability, flexibility, scalabil-
ity, and cost-effectiveness of cloud systems because of security concerns and legacy infrastructure.
A promising solution to this problem is the hybrid cloud model, which fuses public clouds with
private clouds and Network-Attached Storage (NAS). Many researchers tried to secure and opti-
mize public clouds, but few studied the unique security and performance problems of such hybrid
solutions.

This thesis proposal explores hybrid cloud storage solutions that have the advantages of both
public and private clouds. We focus on preserving the strong security and good performance of
on-premises storage, while using public clouds for convenience, data availability, and economic
data sharing. We propose Kurma, an efficient and secure middleware (proxy) system that bridges
traditional NAS and cloud storage. Kurma allows legacy NAS-based programs to seamlessly and
securely access cloud storage. Kurma optimizes performance by supporting and improving on the
latest NFSv4.1 protocol, which contains new performance-enhancing features including compound
procedures and delegations. Kurma also caches hot data in order to serve popular I/O requests from
the faster, on-premises network.

On-premises Kurma proxies act as sources of trust, and overcome the security concerns caused
by the opaque and multi-tenant nature of cloud storage. Kurma protects data from untrusted clouds
with end-to-end integrity and confidentiality, and efficiently detects replay attacks while allowing
data sharing among geo-distributed proxies. Kurma protects data from compromised clients using
anti-virus scanning in addition to NFSv4.1’s access controls. Kurma has a modular architecture
and is flexible so that security features can be traded-off for performance.

We have thoroughly benchmarked NFSv4.1 and improved its performance by up to 11×. We
have designed and implemented an early Kurma prototype with a moderate overhead of 5–66%
under several security policies and workloads. We are working on using multiple clouds as back-
ends to tolerate cloud outages, and efficiently prevent replay attacks in geo-distributed settings. We
are exploring further performance optimization by taking full advantages of NFSv4.1’s compound
procedures, which are currently used ineffectively because of POSIX restrictions.

Our thesis is that cloud storage can be made efficient and secure for traditional NAS-based
systems utilizing hybrid cloud solutions such as Kurma.
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Chapter 1

Introduction

Cloud storage has many desirable traits including high accessibility (from multiple devices, at mul-
tiple locations), availability, flexibility, scalability, and cost-effectiveness [8,81,138]. For instance,
the availability of Google Cloud Storage in 2014 is higher than five nines (99.999%) [138]. How-
ever, cloud storage providers need to improve the integrity and confidentiality of customers’ data.
For example, some customer data got silently corrupted in the cloud [131]. Silent data corruption
could be disastrous, especially in healthcare and financial industries. Privacy and confidentiality
are other serious security concerns as increasingly more organizations and people are moving their
enterprise and private data to the cloud. The significance is emphasized by high-profile incidents
such as leakage of intimate photos of celebrities [7] and theft of patient records [87].

In addition to security concerns, legacy infrastructure is another obstacle to cloud storage adop-
tion. It is difficult to impossible for many organizations to switch to all-cloud infrastructures: tradi-
tional NAS-based systems are incompatible with some clouds’ eventual-consistency semantics [28]
of cloud storage. Moreover, the cost of a full migration of infrastructure can be prohibitive. Higher
performance is also a reason to keep legacy on-premises infrastructure because cloud accesses in-
cur round trips in wide-area networks and are thus slow. In contrast, on-premises infrastructure
uses local-area networks and is thus much faster.

Hybrid cloud computing is a new computing paradigm that takes advantages of both on-
premises infrastructure and public clouds. In the hybrid-cloud model, a portion of computing and
storage goes to the cloud (public clouds) for high accessibility, availability, and scalability—while
the rest remains on premises (private clouds) for high performance and stronger security. Enjoying
the best of both worlds, hybrid clouds are becoming more popular. For instance, many storage ap-
pliances and hyper-convergence platforms [89, 90, 101] now have cloud integration so that public
clouds can be used for backup, expansion, disaster recovery, and web-tier hosting—whereas other
workloads still stay on-premises. However, most existing hybrid cloud systems [89, 90, 101] use
public clouds as a separate tier for specific workloads such as backup, web-tier hosting. Hybrid
clouds, although enjoying strong security and high performance for generic workloads, have not
been studied much.

This thesis proposal focuses on secure, efficient, and generic hybrid-cloud storage solutions
that integrate seamlessly with traditional NAS-based solutions. Specifically, we propose Kurma,
a hybrid-cloud storage system that enables geo-distributed offices of an organization to efficiently
and securely store and share data in public clouds. Depending on configuration, Kurma can tolerate
failure of a single or more cloud providers by storing data across multiple cloud providers, using
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replication or erasure coding. Kurma typically consists of one node for each office, and each Kurma
node is an on-premises proxy that sits between local clients and remote clouds. Kurma combines
the advantages of both private and public clouds, with an emphasis on strong security and high
performance. In Kurma’s threat model, public clouds are not trusted, clients are semi-trusted, and
only the Kurma proxies are fully trusted; Kurma can provide strong security when public clouds
are malicious and clients are compromised by malware. Kurma achieves high performance by
reducing high-latency cloud accesses with local caching, and by using optimized NFSv4.1 for
communication with clients.

Kurma ensures end-to-end data integrity and confidentiality using authenticated encryption
before sending data to the cloud. Data stays in encrypted form in the cloud, and is not decrypted
until clients retrieve the data from clouds. End-to-end integrity and confidentiality protect data
from not only potential attacks during data transmission over the Internet, but also misbehaving
cloud servers and storage devices. Using a simple key-exchange scheme, Kurma can share files
securely among multiple geo-distributed Kurma nodes without relying on any trusted third-party.
Kurma’s cryptographic scheme is robust to replay and swap attacks. Kurma records the version of
each data block to detect replay attacks that attempt to overwrite a file with older versions of the
file. Kurma synchronizes the version numbers of data blocks among all its nodes so that clients
always get the latest version of files after they are modified by a remote Kurma node. Kurma is
also secure against intra- and inter-file swap attacks that swap two different data blocks. Kurma
also performs anti-virus scanning to catch infected clients and to stop the spread of viruses.

In addition to strong security, Kurma optimizes performance with three mechanisms. First,
Kurma minimizes the performance overhead of its security features. Kurma embeds security meta-
data (e.g., Message Authentication Codes) into the data so that storing security meta-data does not
incur any extra high-latency cloud accesses. Kurma allows clients turn on each security feature
(integrity, encryption, and anti-virus) separately according to desired security policies; this facili-
tates flexible trade-offs between performance and security when, for example, some files need only
integrity but not encryption or anti-virus. Second, each Kurma node contains a persistent write-
back cache that stores recently-used data and coalesces writes to the cloud. Caching allows Kurma
to handle most file operations in the on-premises network, without accessing any remote cloud
servers. Kurma carefully integrates caching with the security modules to pursue the right balance
between security and performance. For example, Kurma stores plain-text data in the cache so that
no encryption or decryption is needed for cached operations, and Kurma also delays anti-virus
scanning for as long as it is safe when inserting a dirty file into the cache. Third, Kurma uses an
optimized NFSv4.1 implementation for communication with clients. Compared to the still popular
NFSv3 [79], the latest NFSv4.1 has new and advanced features such as compound procedures and
delegations that can improve performance.

We began this work by benchmarking NFSv4.1 to find out how good or bad NFSv4.1 per-
forms in local- and wide-area networks; along the way, we found and fixed a number of problems,
which significantly improved NFSv4.1’s performance. We then implemented and evaluated an
early Kurma prototype called SeMiNAS, which uses a single NFS-based public cloud (instead of
multiple clouds) and is not yet secure against replay attacks. Based on the early prototype, we
are adding defense to replay attacks when data is shared among geo-distributed Kurma proxies;
the main idea to achieve that is to synchronize and check version numbers of data blocks among
proxies. We also propose to use multiple public clouds as back-end to avoid data being locked to
a single cloud provider. Meanwhile, we are exploring how to further improve NFSv4.1’s perfor-
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mance by taking full advantages of compound procedures, which we found to be under-utilized
due to POSIX limitations [21]. We propose to design and implement a convenient and efficient file
system API that facilitates combining multiple small operations into fewer but larger compound
procedures.

Our thesis is that cloud storage can be made both efficient and secure for generic workloads,
and seamlessly integrate with traditional NAS-based systems. We strive for the following five
contributions in the design, implementation, and evaluation of Kurma:

• a comprehensive and in-depth performance analysis of NFSv4.1 and its unique features
(statefulness, sessions, delegations, etc.) by comparison to NFSv3 under low- and high-
latency networks, using a wide variety of micro- and macro-workloads;

• significant performance improvements of NFSv4.1 by fixing Linux’s NFSv4.1 implementa-
tion and taking full advantages of NFSv4.1’s compound procedures;

• a geo-distributed hybrid cloud system that allows on-premises NFS clients to store and share
data in public clouds in a secure, seamless, efficient, and flexible manner;

• a powerful cryptographic data-sharing scheme that is efficient and robust against replay at-
tacks without using traditional Merkle trees [82], which are expensive in cloud environments;

• insights into complex interactions and the trade-off between caching and security features,
including integrity, confidentiality, and anti-virus.

The rest of this thesis proposal is organized as follows. Chapter 2 presents the performance
benchmarking of NFSv4.1 in comparison to NFSv3, as well as our improvement to Linux’s NFSv4.1
implementation that boosts performance by up to 11×. Chapter 3 details the design, implementa-
tion, and evaluation of SeMiNAS, an early Kurma prototype as our first attempt. SeMiNAS pro-
vides integrity, confidentiality, and anti-virus, but uses a single NAS-based cloud as the back-end
and is insecure under replay attacks. Chapter 4 describes the design of Kurma that uses multiple
clouds and is secure under replay attacks in geo-distributed settings. Chapter 5 proposes the work
to be finished in the dissertation including the implementation and evaluation of Kurma, and ex-
ploration of NFS compound procedures. Chapter 6 concludes and discusses future work beyond
this proposed thesis.
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Chapter 2

Benchmarking Network File System

2.1 Introduction
Before the cloud era, over 90% of enterprise storage capacity was served by network-based stor-
age [142], and Network File System (NFS) represents a significant proportion of that total [124].
NFS has become a highly popular network-storage solution since its introduction more than 30
years ago [108]. Faster networks, the proliferation of virtualization, and the rise of cloud comput-
ing all contribute to continued increases in NFS deployments [1]. In order to inter-operate with
more enterprises, Kurma supports an NFS interface and its proxies appear as NAS appliances to
clients. Using NFS, instead of vendor-specific cloud storage APIs, as the storage protocol also
improves application portability and alleviates the vendor lock-in problem of cloud storage [8]. In
this chapter, we focus our study on NFS. Specifically, we performed a comparative benchmarking
study of the NFS versions to choose the NFS version(s) to be supported in Kurma.

Network File System is a distributed file system initially designed by Sun Microsystem [108].
In a traditional NFS environment, a centralized NFS server stores files on its disks and exports
those files to clients; NFS clients then access the files on the server using the NFS protocol. Pop-
ular operating systems, including Linux, Mac OSX, and Windows, have in-kernel NFS support,
which allows clients access remote NFS files using the POSIX API as if they are local files. By
consolidating all files in once server, NFS simplifies file sharing and storage management signifi-
cantly.

The continuous development and evolution of NFS has been critical to its success. The initial
version of NFS is known only internally within Sun Microsystems, the first publicized version of
NFS is NFSv2 [108,119], which supports only UDP and 32-bit file sizes. Following NFSv2 (which
we will refer to as V2 for brevity), NFSv3 (V3) added TCP support, 64-bit file sizes and offsets,
asynchronous COMMITs, and performance features such as READDIRPLUS. NFSv4.0 (V4.0), the
first minor version of NFSv4 (V4), had many improvements over V3, including (1) easier deploy-
ment with one single well-known port (2049) that handles all operations including file locking,
quota management, and mounting; (2) stronger security using RPCSEC GSS [107]; (3) more ad-
vanced client-side caching using delegations, which allow the cache to be used without lengthy
revalidation; and (4) better operation coalescing via COMPOUND procedures. NFSv4.1 (V4.1),
the latest minor version, further adds Exactly Once Semantics (EOS) so that retransmitted non-
idempotent operations are handled correctly, and pNFS, which allows direct client access to multi-
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ple data servers and thus greatly improves performance and scalability [56, 107]. NFS’s evolution
does not stop after NFSv4.1; NFSv4.2 is under development with many new features and opti-
mizations [120] already proposed.

V4.1 became ready for production deployment only a couple of years ago [37, 79]. Because it
is new and complex, V4.1 is less understood than older versions; we did not find any comprehen-
sive evaluation of either V4.0 or V4.1 in the literature. (V4.0’s RFC is 275 pages long, whereas
V4.1’s RFC is 617 pages long.) However, before adopting V4.1 for production, it is important to
understand how NFSv4.1 behaves in realistic environments. To this end, we thoroughly evaluated
Linux’s V4.1 implementation by comparing it to V3, the still-popular older version [79], in a wide
range of environments using representative workloads.

Our NFS benchmarking study has four contributions: V4.1 in low- and high-latency net-
works, using a wide variety of micro- and macro-workloads; (1) performance analysis that clearly
explains how underlying system components (networking, RPC, and local file systems) influence
NFS’s performance; (2) a deep analysis of the performance effect of V4.1’s unique features (state-
fulness, sessions, delegations, etc.) in its Linux implementation; and (3) fixes to Linux’s V4.1
implementation that improve its performance by up to 11×. This benchmarking study has been
published in ACM SIGMETRICS 2015 [21].

Some of our key findings are:

• How to tune V4.1 and V3 to reach up to 1177MB/s aggregate throughput in 10GbE networks
with 0.2–40ms latency, while ensuring fairness among multiple NFS clients.

• When we increase the number of benchmarking threads to 2560, V4.1 achieves only 0.3×
the performance of V3 in a low-latency network, but is 2.9× better with high latency.

• When reading small files, V4.1’s delegations can improve performance up to 172× compared
to V3, and can send 29× fewer NFS requests in a file-locking workload;

The rest of this chapter is organized as follows. Section 2.2 describes our benchmarking
methodology. Sections 2.3 and 2.4 discuss the results of data- and metadata-intensive workloads,
respectively. Section 2.5 explores NFSv4’s delegations. Section 2.6 examines macro-workloads
using Filebench. Section 2.7 overviews related work. We conclude and discuss limitations in
Section 2.8.

2.2 Benchmarking Methodology
This section details our benchmarking methodology including experimental setup, software set-
tings, and workloads.

2.2.1 Experimental Setup
We used six identical Dell PowerEdge R710 machines for this study. Each has a six-core Intel
Xeon X5650 2.66GHz CPU, 64GB of RAM, and an Intel 82599EB 10GbE NIC. We configured
five machines as NFS clients and one as the NFS server. On the server, we installed eight Intel
DC S3700 200GB SSDs in a RAID-0 configuration with 64KB stripes, using a Dell PERC 6/i
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RAID controller with a 256MB battery-backed write-back cache. We measured read throughputs
of up to 860MB/s using this storage configuration. We chose these high speed 10GbE NICs and
SSDs to avoid being bottlenecked by the network or the storage. Our initial experiments showed
that even a single client could easily overwhelm a 1GbE network; similarly, a server provisioned
with HDDs or even RAID-0 across several HDDs quickly became overloaded. We believe that NFS
servers’ hardware and network must be configured to scale well and that our chosen configuration
represents modern servers; it reached 98.7% of the 10GbE NICs’ maximum network bandwidth,
allowing us to focus on the NFS protocol’s performance rather than hardware limits.

All machines ran CentOS 7.0.1406 with a vanilla 3.14.17 Linux kernel. Both the OS and the
kernel were the latest stable versions at the time we began this study. We chose CentOS because
it is a freely available version of Red Hat Enterprise Linux, which is often used in enterprise
environments. We manually ensured that all machines had identical BIOS settings. We connected
the six machines using a Dell PowerConnect 8024F 24-port 10GbE switch. We enabled jumbo
frames and set the Ethernet MTU to 9000 bytes. We also enabled TCP Segmentation Offload to
leverage the offloading feature of our NIC and to reduce CPU overhead. We measured a round-trip
time (RTT) of 0.2ms between two machines using ping and a raw TCP throughput of 9.88Gb/s
using iperf.

Many parameters can affect NFS performance, including the file system used on the server,
its format and mount options, network parameters, NFS and RPC parameters, export options, and
client mount options. Unless noted otherwise, we did not change any default OS parameters. We
used the default ext4 file system, with default settings, for the RAID-0 NFS data volume, and
chose Linux’s in-kernel NFS server implementation. We did not use our Kurma NFS server to
avoid any potential problems in our implementation and to draw conclusions that are reproducible
and widely applicable. We exported the volume with default options, ensuring that sync was
set so that writes were faithfully committed to stable storage as requested by clients. We used
the default RPC settings, except that tcp slot table entries was set to 128 to ensure the
client could send and receive enough data to fill the network. We used 32 NFSD threads, and
our testing found that increasing that value had a negligible impact on performance because the
CPU and SSDs were rarely the bottleneck. On the clients, we used the default mount options,
with the rsize and wsize set to 1MB, and the actimeo (attribute cache timeout) set to 60
seconds. Because our study focuses on the performance of NFS, in our experiments we used the
default security settings, which do not use RPCSEC GSS or Kerberos and thus do not introduce
additional overheads.

2.2.2 Benchmarks and Workloads
We developed a benchmarking framework named Benchmaster, which can launch workloads on
multiple clients concurrently. To verify that Benchmaster can launch time-aligned workloads, we
measured the time difference by NTP-synchronizing client clocks and then launching a program
that simply writes the current time to a local file. We ran this test 1000 times and found an average
delta of 235ms and a maximum of 432ms. This variation is negligible compared to the 5-minute
running time of our benchmarks.

Benchmaster also periodically collects system statistics using tools such as iostat and vmstat,
and by reading procfs entries such as /proc/self/mountstats. The mountstats file
provides particularly useful details of each individual NFS procedure, including counts of requests,
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the number of timeouts, bytes sent and received, accumulated RPC queueing time, and accumu-
lated RPC round-trip time. It also contains RPC transport-level information such as the number of
RPC socket sends and receives, the average request count on the wire, etc.

We ran our tests long enough to ensure stable results, usually 5 minutes. We repeated each test
at least three times, and computed the 95% confidence interval for the mean using the Student’s
t-distribution. Unless otherwise noted, we plot the mean of all runs’ results, with the half-widths
of the confidence intervals shown as error bars. We focused on system throughput and varied the
number of threads in our benchmarking programs in our experiments. Changing the thread count
allowed us to (1) infer system response time from single-thread results, (2) test system scalability
by gradually increasing the number of threads, and (3) measure the maximum system throughput
by using many threads.

To evaluate NFS performance over short- and long-distance networks, we injected delays rang-
ing from 1ms to 40ms using netem at the NFS clients side. Using ping, we measured 40ms
to be the average latency of Internet communications within New York State. We measured New
York-to-California latencies of about 100ms, but we do not report results using such lengthy delays
because many experiments operate on a large number of files and it took too long just to initialize
(pre-allocate) those files. For brevity, we refer to the network without extra delay as “zero-delay,”
and the network with nms injected delay as “nms-delay” in the rest of this thesis proposal.

We benchmarked four kinds of workloads:

1. Data-intensive micro-workloads that test the ability of NFS to maximize network and storage
bandwidth (Section 2.3);

2. Metadata-intensive micro-workloads that exercise NFS’s handling of file metadata and small
messages (Section 2.4);

3. Micro-workloads that evaluate delegations, which are V4’s new client-side caching mecha-
nism (Section 2.5); and

4. Complex macro-workloads that represent real-world applications (Section 2.6).

2.3 Data-Intensive Workloads
This section discusses four data-intensive micro-workloads that operate on one large file: random
read, sequential read, random write, and sequential write.

2.3.1 Random Read
We begin with a workload where five NFS clients read a 20GB file with a given I/O size at random
offsets. We compared the performance of V3 and V4.1 under a wide range of parameter settings
including different numbers of benchmarking threads per client (1–16), different I/O sizes (4KB–
1MB), and different network delays (0–40ms). We ensured that all experiments started with the
same cache states by re-mounting the NFS directory and dropping the OS’s page cache before each
experiment. For all combinations of thread count, I/O size, and network delay, V4.1 and V3 per-
formed equally well because these workloads were exercising the network and storage bandwidth
rather than the differences between the two NFS protocols.
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Figure 2.1: Random-read throughput with 16 threads and different network delays (varying I/O
size).
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Figure 2.2: Random-read throughput with 1MB I/O size, default 2MB TCP maximum buffer size,
and different network delays (varying the number of threads per client).

We found that increasing the number of threads and the I/O size always improved a client’s
throughput. We also found that network delays had a significant impact on throughput, especially
for smaller I/O sizes. As shown in Figure 2.1, a delay of 10ms reduced the throughput by 20×
for 4KB I/Os, but by only 2.6× for 64KB ones, and did not make a difference for 1MB I/Os. The
throughputs in Figure 2.1 were averaged over the 5-minute experiment run, which can be divided
into two phases demarcated by the time when the NFS server finally cached the entire 20GB file.
NFS’s throughput was bottlenecked by the SSDs in the first phase, and by the network in the
second. The large throughput drop for 4KB I/Os (20×) was because the 10ms delay lowered the
request rate far enough that the first phase did not finish within 5 minutes. But with larger I/Os,
even with 10ms network delay the NFS server was able to cache the entire 20GB during the run.
Note that the storage stack performed better with larger I/Os: the throughput of our SSD RAID
is 75.5MB/s with 4KB I/Os, but 285MB/s with 64KB I/Os (measured using direct I/O and 16
threads), largely thanks to the SSDs’ inherent internal parallelism.

However, when we increased the network delay further, from 10ms to 40ms, we could not
saturate the 10GbE network (Figure 2.2) even if we added more threads and used larger I/O sizes.
As shown in Figure 2.2, the curves for 20ms, 30ms, and 40ms reached a limit at 4 threads. We
found that this limit was caused by the NFS server’s maximum TCP buffer sizes (rmem max and
wmem max size), which restricted TCP’s congestion window (i.e., the amount of data on the wire).
To saturate the network, the rmem max and wmem max sizes must be larger than the network’s
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Figure 2.3: Sequential-read throughputs of individual clients when they were launched one after
the other at an interval of one minute. Throughput results of one run of experiments; the higher
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clients are not equal and fall into two clusters, where the throughput of the higher cluster (winners)
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4m30s because of re-hashing. The winner-loser pattern is irrelvent to the launch order of the
clients; for example, we launched Client2 before Client3, but Client2 is a loser and Client3 is a
winner at the end.

bandwidth-delay product. After we changed those values from their default of 2MB to 32MB
(larger than 10Gb/s×40ms

5
where 5 is the number of clients), we achieved a maximum throughput of

1120MB/s when using 8 or more threads in the 20ms- to 40ms-delay networks. These experiments
show that we can come close to the maximum network bandwidth for data-intensive workloads by
tuning the TCP buffer size, I/O size, and the number of threads for both V3 and V4.1. To avoid
being limited by the maximum TCP buffer size, we used 32MB for rmem max and wmem max
for all machines and experiments in the rest of this proposal.

2.3.2 Sequential Read
We next turn to an NFS sequential-read workload, where five NFS clients repeatedly scanned a
20GB file from start to end using an I/O size of 1MB. For this workload, V3 and V4.1 performed
equally well: both achieved a maximum aggregate throughput of 1177MB/s. However, we fre-
quently observed a winner-loser pattern among the clients, for both V3 and V4.1, exhibiting the
following three traits: (1) the clients formed two clusters, one with high throughput (winners),
and the other with low throughput (losers); (2) often, the winners’ throughput was approximately
double that of the losers; and (3) no client was consistently a winner or a loser, and a winner in one
experiment might became a loser in another.

The winner-loser pattern was unexpected given that all the five clients had the same hardware,
software, and settings, and were performing the same operations. Initially, we suspected that the
pattern was caused by the order in which the clients launched the workload. To test that hypothesis,
we repeated the experiment but launched the clients in a controlled order, one additional client
every minute. However, the results disproved any correlation between experiment launch order
and the winners. Figure 2.3 shows that Client2 started second but ended up as a loser, whereas
Client5 started last but became a winner. Figure 2.3 also shows that the winners had about twice
the throughput of the losers. We repeated this experiment multiple times and found no correlation
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Figure 2.4: Illustration of Hash-Cast. The NIC of the NFS server has six transmit queues (tx). The
NFS server is sending data to five clients using one TCP flow for each client. Linux hashes the
TCP flows of Client1, Client3, and Client5 into tx3, tx2, and tx5, respectively; and hashes the flows
of both Client2 and Client4 into tx0. Therefore, Client2 and Client4 shares one transmit queue and
each gets half of the throughput of the queue.

between a client’s start order and its chance of being a winner or loser.
By tracing the server’s networking stack, we discovered that the winner-loser pattern is closely

related to the server’s use of physical queues in its network interface card (NIC). Every NIC has
a physical transmit queue (tx-queue) holding outbound packets, and a physical receive queue
(rx-queue) tracking empty buffers for inbound packets [105]. Many modern NICs have multi-
ple sets of tx-queues and rx-queues to allow networking to scale with the number of CPU
cores (each queue can be configured to interrupt a specific core), and to facilitate better NIC virtu-
alization [105]. Linux uses hashing to decide which tx-queue to use for each outbound packet.
However, not all packets are hashed; instead, each TCP socket has a field recording the tx-queue
the last packet was forwarded to. If a socket has any existing packets in the recorded tx-queue,
its next packet is also placed in that queue. This approach allows TCP to avoid generating out-
of-order packets by placing packet n on a long queue and n + 1 on a shorter one. However, a
side effect is that for highly active TCP flows that always have outbound packets in the queue, the
hashing is effectively done per-flow rather than per-packet. (On the other hand, if the socket has no
packets in the recorded tx-queue, its next packet is re-hashed, probably to a new tx-queue.)

The winner-loser pattern is caused by uneven hashing of TCP flows to tx-queues. In our
particular experiments, the server had five flows (one per client) and a NIC configured with six
tx-queues. If two of the flows were hashed into one tx-queue and the rest went into three
separate tx-queues, then the two flows sharing a tx-queue got half the throughput of the other
three because all tx-queues were transmitting data at the same rate. We call this phenomenon—
hashing unevenness causing a winner-loser pattern of throughput—Hash-Cast, which is illustrated
in Figure 2.4.

Hash-Cast explains the performance anomalies illustrated in Figure 2.3. First, Client1, Client2,
and Client3 were hashed into tx3, tx0, and tx2, respectively. Then, Client4 was hashed into
tx0, which Client2 was already using. Later, Client5 was hashed into tx3, which Client1 was
already using. However, at 270 seconds, Client5’s tx-queue drained and it was rehashed into
tx5. At the experiment’s end, Client1, Client3, and Client5 were using tx3, tx2, and tx5,
respectively, while Client2 and Client4 shared tx0. Hash-Cast also explains why the losers usually
got half the throughputs of the winners: the {0,0,1,1,1,2} distribution is the most likely hashing
result (we calculated its probability as roughly 69%).
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Figure 2.5: Random-write throughput in a zero-delay network with different I/O size. The higher
the better. “Max” is the throughput when running the workload directly on the server side without
using NFS. The “Max” throughput serves as a baseline when evaluating NFS’s overhead.

To eliminate hashing unfairness, we evaluated the use of a single tx-queue. Unfortunately,
we still observed an unfair throughput distribution across clients because of complicated network-
ing algorithms such as TSO Automatic Sizing, which can form feedback loops that keep slow TCP
flows always slow [23]. To resolve this issue, we further configured tc qdisc to use Stochastic
Fair Queueing (SFQ), which achieves fairness by hashing flows to many software queues and sends
packets from those queues in a round-robin manner [80]. Most importantly, SFQ used 127 soft-
ware queues so that hash collisions were much less probable compared to using only 6 queues. To
further alleviate the effect of collisions, we set SFQ’s hashing perturbation rate to 10 seconds using
tc qdisc, so that the mapping from TCP flows to software queues changed every 10 seconds.

Note that using a single tx-queuewith SFQ did not reduce the aggregate network throughput
compared to using multiple tx-queues without SFQ. We measured only negligible performance
differences between these two configurations. We found that many of Linux’s queuing disciplines
assume a single tx-queue and could not be configured to use multiple ones. Thus, it might be
desirable to use just one tx-queue in many systems, not just NFS servers. To ensure fairness
among clients, for the remainder of experiments in this thesis proposal we used SFQ with a single
tx-queue. The random-read results shown in Section 2.3.1 also used SFQ.

2.3.3 Random Write
The random-write workload is the same as the random-read one discussed in Section 2.3.1 except
that the clients were writing data instead of reading. Each client had a number of threads that
repeatedly wrote a specified amount (I/O size) of data at random offsets in a pre-allocated 20GB
file. All writes were in-place and did not change the file size. We opened the file with O SYNC set,
to ensure that the clients write data back to the NFS server instead of just caching it locally. This
setup is similar to many I/O workloads in virtualized environments [124], which use NFS heavily.

We varied the I/O size from 4KB to 1MB, the number of threads from 1 to 16, and the injected
network delay from 0ms to 10ms. We ran the experiments long enough to ensure that the working
sets, including in the 4KB I/O case, were at least 10 times larger than our RAID controller’s cache
size. As expected, larger I/O sizes and more threads led to higher throughputs, and longer network
delays reduced throughput. V4.1 and V3 performed comparably, with V4.1 slightly worse (2% on
average) in the zero-delay network.
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Figure 2.6: Random-write throughput of a single NFS client in a zero-delay network (log10). The
higher the better. The “App” curve is the throughput observed by the benchmarking application,
i.e., the writing speed of the application to the file; the “Client” curve is the throughput observed
by the NFS client, i.e., the writing speed of the clients to the remote NFS server.

Figure 2.5 shows the random-write throughput when we varied the I/O size in the zero-delay
network. V4.1 and V3 achieved around the same throughput, but both were significantly slower
than the maximum performance of our SSD RAID (measured on the server side without NFS).
Neither V4.1 nor V3 achieved the maximum throughput even with more threads. We initially sus-
pected that the lower throughputs were caused by the network, but the throughput did not improve
when we repeated the experiment directly on the NFS server over the loopback device. Instead, we
found the culprit to be the O SYNC flag, which has different semantics in ext4 than in NFS. The
POSIX semantics of O SYNC require all meta-data updates to be synchronously written to disk.
On Linux’s local file systems, however, O SYNC is implemented so that only the actual file data
and the meta-data directly needed to retrieve that data are written synchronously; other meta-data
remains buffered. Since our workloads used only in-place writes, which updated the file’s modifi-
cation time but not the block mapping, writing an ext4 file did not update meta-data. In contrast,
the NFS implementation more strictly adheres to POSIX, which mandates that the server com-
mit both the written data and “all file system metadata” to stable storage before returning results.
Therefore, we observed many meta-data updates in NFS, but not in ext4. The overhead of those
extra updates was aggravated by ext4’s journaling of meta-data changes on the server side. (By
default ext4 does not journal changes to file data.) The extra updates and the journaling intro-
duced numerous extra I/Os, causing NFS’s throughput to be significantly lower than the RAID-0’s
maximum (measured without NFS). This finding highlights the importance of understanding the
effects of the NFS server’s implementation and the underlying file system that it exports.

We also tried the experiments without setting O SYNC, which generated a bursty workload to
the NFS server, as shown in Figure 2.6. Clients initially realized high throughput (over 1GB/s)
since all data was buffered in their caches. Once the number of dirty pages passed a threshold,
the throughput dropped to near zero as the clients began flushing those pages to the server; this
process took up to 3 minutes depending on the I/O size. After that, the write throughput became
high again, until caches filled—and the bursty pattern then repeated.
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Figure 2.7: Throughput of reading small files with one thread in a zero-delay network.

2.3.4 Sequential Write
We also benchmarked sequential-write workloads, where each client had a single thread writing
sequentially to the 20GB file. V4.1 and V3 again had the same performance. However, the ag-
gregate throughputs of single-threaded sequential-write workloads were lower than the aggregate
throughputs of their multi-threaded counterparts because our all-SSD storage backend has internal
parallelism [3], and favors multi-threaded I/O accesses. For sequential writes, the O SYNC behav-
ior we discussed in Section 2.3.3 had an even stronger effect if the backend storage used HDDs,
because the small disk writes generated by the meta-data updates and the associated journaling
broke the sequentiality of NFS’s writes to disk. We measured a 50% slowdown caused by this
effect when we used HDDs for our storage backend instead of SSDs [22].

2.4 Metadata-Intensive Workloads
The data-intensive workloads discussed so far are more sensitive to network and I/O bandwidth
than to latency. This section focuses on meta-data-intensive workloads, which are critical to NFS’s
overall performance because of the popularity of uses such as shared home directories, where
common workloads like software development and document processing involve many small- to
medium-sized files. We discuss three micro-workloads that exercise NFS’s meta-data operations
by operating on a large number of small files: file reads, file creations, and directory listings.

2.4.1 Read Small Files
We pre-allocated 10,000 4KB files on the NFS server. Figure 2.7 shows the results of the 5 clients
randomly reading entire files repeatedly for 5 minutes. The throughputs of both V3 and V4.1 in-
creased quickly during the first 10 seconds and then stabilized once the clients had read and cached
all files. V4.1 started slower than V3, but outperformed V3 by 2× after their throughputs stabi-
lized. We observed that V4.1 made 8.3× fewer NFS requests than V3 did. The single operation
that caused this difference was GETATTR, which accounted for 95% of all the requests performed
by V3. These GETATTRs were being used by the V3 clients to revalidate their client-side cache.
However, V4.1 rarely made any requests once its throughput had stabilized. Further investigation
revealed that this was caused by V4.1’s delegation mechanism, which allows client-side caches
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Figure 2.8: Aggregate throughput of reading small files with 16 threads in a 10ms-delay network
(log10). The “V4.1” curve is the throughput of vanilla NFSv4.1; the “V4.1p” cruve is the through-
put of the patched NFSv4.1 with our fix.

to be used without revalidation. We discuss and evaluate V4’s delegations in greater detail in
Section 2.5.

To investigate read performance with fewer caching effects, we used a 10ms network delay to
increase the time it would take to cache all of the files. With this delay, the clients did not finish
reading all of the files during the same 5-minute experiment. We observed that the client’s through-
put dropped to under 94 ops/s for V3 and under 56 ops/s for V4.1. Note that each V4.1 client made
an average of 243 NFS requests per second, whereas each V3 client made only 196, which is
counter-intuitive given that V4.1 had lower throughput. The reason for V4.1’s lower throughput
is its more verbose stateful nature: 40% of V4.1’s requests are state-maintaining requests (e.g.,
OPENs and CLOSEs in this case), rather than READs. State-maintaining requests do not contribute
to throughput, and since most files were not cached, V4.1’s delegations could not help reduce the
number of stateful requests.

To compensate for the lower throughput due to the 10ms network delay, we increased the num-
ber of threads on each client, and then repeated the experiment. Figure 2.8 shows the throughput
results (log scale). With 16 threads per client V3’s throughput (the red line) started at around 8100
ops/s and quickly increased to 55,800 ops/s. After that, operations were served by the client-side
cache; only GETATTR requests were made for cache revalidation. V4.1’s throughput (the green
curve) started at only 723 ops/s, which is eleven times slower than that of V3. It took 200 seconds
for V4.1 to cache all files; then V4.1 overtook V3, and afterwards performed 25× faster thanks to
delegations. V4.1 also made 71% fewer requests per second than V3; this reversed the trend from
the no-latency-added single-thread case (Figure 2.7), where V4.1 had lower throughput but made
more requests.

To understand this behavior, we reviewed the mountstat data for the V4.1 tests. We found
that the average RPC queuing time of V4.1’s OPEN and CLOSE requests was as long as 223ms,
while that average queuing time of all V4.1’s other requests (ACCESS, GETATTR, LOOKUP, and
READ) was shorter than 0.03ms. (The RPC queuing time is the time between when an RPC is
initialized and when it begins transmitting over the wire.) This means that some OPENs and CLOSEs
waited over 200ms in a client-side queue before the client started to transmit them.

To diagnose the long delays, we used Systemtap to instrument all the rpc wait queues
in Linux’s NFS client kernel module and found the culprit to be an rpc wait queue for seqid,
which is an argument to OPEN and CLOSE requests [107]; it was used by V4.0 clients to notify the
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Figure 2.9: Aggregate throughput of creating empty files in a 10ms-delay network with different
numbers of threats per client.

server of changes in client-side states. V4.0 requests that needed to change the seqid were fully
serialized by this wait queue. The problem is exacerbated by the fact that once entered into this
queue, a request is not dequeued until it receives the server’s reply. However, seqid is obsolete
in V4.1: the latest standard [107] explicitly states that “The ‘seqid’ field of the request is not used
in NFSv4.1, but it MAY be any value and the server MUST ignore it.”

We fixed the long queuing time for seqid by avoiding the queue entirely. (We have submitted
a patch to the kernel mailing list.) For V4.0, seqid is still used and our patch does not change
its behavior. We repeated the experiments with these changes; the new results are shown as the
blue curve in Figure 2.8. V4.1’s performance improved by more than 6× (from 723 ops/s to
4655 ops/s). V4.1 finished reading all the files within 35 seconds, and thereafter stabilized at a
throughput 172× higher than V3 because of delegations. In addition to the higher throughput,
V4.1’s average response time was shorter than that of V3, also because of delegations. For brevity,
we refer to the patched NFSv4.1 as V4.1p in following discussions.

We noted a periodic performance drop every 60 seconds in Figures 2.7 and 2.8, which cor-
responds to the actimeo mount option. When this timer expires, client-cached metadata must
again be retrieved from the server, temporarily lowering throughput. Enlarging the actimeo
mount option is a way to trade cache consistency for higher performance.

2.4.2 File Creation
We demonstrated above that client-side caching, especially delegations, can greatly reduce the
number of NFS meta-data requests when reading small files. To exercise NFS’s meta-data opera-
tions more, we now turn to a file-creation workload, where client-side caching is less effective. We
exported one NFS directory for each of the five clients, and instructed each client to create 10,000
files of a given size in its dedicated directory, as fast as possible.

Figure 2.9 shows the speed of creating empty files in the 10ms-delay network. To test scala-
bility, we varied the number of threads per client from 1 to 512. V4.1 started at the same speed as
V3 when there was only one thread per client. Between 2–32 threads, V4.1 outperformed V3 by
1.1–1.5×, and V4.1p (NFSv4.1 with our patch) outperformed V3 by 1.9–2.9×. Above 32 threads,
however, V4.1 became 1.1–4.6× slower than V3, whereas V4.1p was 2.5–2.9× faster than V3.

As shown in Figure 2.9, when the number of threads per client increased from 1 to 16, V3
sped up by only 12.5%, V4.1 by 50%, and V4.1p by 225%. In terms of scalability (1–16 threads),
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Figure 2.10: Average number of outstanding requests when creating empty files in a 10ms-delay
network.

V3 scaled poorly, with an average performance boost of merely 3% each power-of-two step in the
thread count. V4.1 scaled slightly better, with an average 10% boost per step. But, because of the
seqid synchronizing bottleneck explained in Section 2.4.1, its performance did not improve at all
once the thread count increased beyond two. With the seqid problem fixed, V4.1p scaled much
better, with an average boost of 34% per step. With 16–512 threads, V3’s scalability improved
significantly, and it achieved a high average performance boost of 44% per step; V4.1p also scaled
well with an average boost of 40% per step.

V4.1p always outperformed the original V4.1, by up to 11.6× with 512 threads. Therefore, for
the rest of this thesis proposal, we only report figures for V4.1p, unless otherwise noted.

In the 10ms-delay network, the rates of creating empty, 4KB, and 16KB files differed by less
than 2% when there were more than 4 threads, and by less than 27% with fewer threads; thus, they
all had the same trends. As shown in Figure 2.9, depending on the number of threads, V4.1p created
small files 1.9–2.9× faster than V3 did. To understand why, we analyzed the mountstats data
and found that the two versions differed significantly in the number of outstanding NFS requests
(i.e., requests sent but not yet replied to). We show the average number of outstanding NFS requests
in Figure 2.10, which closely resembles Figure 2.9 in overall shape. This suggests that V4.1p
performed faster than V3 because the V4.1p clients sent more requests to the server at one time. We
examined the client code and discovered that V3 clients use synchronous RPC calls (rpc call sync)
to create files, whereas V4.1p clients use asynchronous calls (rpc call async) that go through a
work queue (nfsiod workqueue). We believe that the asynchronous calls are the reason why V4.1p
had more outstanding requests: the long network delay allowed multiple asynchronous calls to
accumulate in the work queue and be sent out in batch, allowing networking algorithms such as
TCP Nagle to efficiently coalesce multiple RPC messages. Sending fewer but larger messages is
faster than sending many small ones, so V4.1p achieved higher rates. Our analysis was confirmed
by the mountstats data, which showed that V4.1p’s OPEN requests had significantly longer
queuing times (up to 30×) on the client side than V3’s CREATEs. (V3 uses CREATEs to create
files whereas V4.1p uses OPENs.) Because V3’s server is stateless, all its mutating operations
have to be synchronous; otherwise a server crash might lose data. V4, however, is stateful and
can perform mutating operations asynchronously because it can restore states properly in case of
server crashes [88].

In the zero-delay network, there was not a consistent winner between the two NFS versions
(Figure 2.11). Depending on the number of threads, V4.1p varied from 1.76× faster to 3× slower
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Figure 2.11: Rate of creating empty files in a zero-delay network.
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Figure 2.12: Average waiting time for V4.1p’s session slots of ten experimental runs. Error bars
are standard deviations.

than V3. In terms of scalability, V3’s speed increased slowly when we began adding threads, but
jumped quickly between 64 and 512 threads. In contrast, V4.1p’s speed improved quickly at the
initial stage, but plateaued and then dropped when we used more than 4 threads.

To understand why, we looked into the mountstats data, and found that the corresponding
graph (not shown) of the average number of outstanding requests closely resembles Figure 2.11. It
again suggests that the lower speed was the result of a client sending requests rather slowly. With
further analysis, we found that V4.1p’s performance drop after 32 threads was caused by high con-
tention for session slots, which are V4.1p’s unique resources the server allocates to clients. Each
session slot allows one request; if a client runs out of slots (i.e., has reached the maximum number
of concurrent requests the server allows), it has to wait until one becomes available, which happens
when the client receives a reply for any of its outstanding requests. We instrumented the client ker-
nel module and collected the waiting time on the session slots. As shown in Figure 2.12, waiting
began at 32 threads, which is also where V4.1p’s performance began dropping (Figure 2.11). Note
that with 512 threads, the average waiting time is 2500ms, or 12,500× the 0.2ms round-trip time.
(The 10ms-delay experiment also showed waiting for session slots, but the wait time was short
compared to the network RTT and thus had a smaller effect on performance.)

We note that Figure 2.12 had high standard deviations above 32 threads per client. This behav-
ior results from typical non-real-time scheduling artifacts in Linux, where some threads can win
and be scheduled first, while others wait longer. Even when we ran the same experiment 10 times,
standard deviations did not decrease, suggesting a non-Gaussian, multi-modal distribution [122].
In addition to V4.1p’s higher wait time in this figure, the high standard deviation means that it
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Figure 2.13: Directory listing throughput (log10).

would be harder to enforce SLAs with V4.1p for highly-concurrent applications.
With 2–16 threads (Figure 2.11), V4.1p’s performance advantage over V3 was because of

V4.1p’s asynchronous calls (the same as explained above); V4.1p’s OPENs had around 4× longer
queuing time, which let multiple requests accumulate and be sent out in batch. This queuing time
was not caused by the lack of available session slots (Figure 2.12). This was verified by evaluating
the use of a single thread, in which case V4.1p performed 17% slower than V3 because V4.1p’s
OPEN requests are more complex and took longer to process than V3’s CREATE (see Section 2.4.3).

One possible solution to V4.1p’s session-slot bottleneck is to enlarge the number of server-side
slots to match the client’s needs. However, slots consume resources: for example, the server must
then increase its duplicate request cache (DRC) size to maintain its exactly once semantics (EOS).
Increasing the DRC size can be expensive, because the DRC has to be persistent and is possibly
saved in NVRAM. V3 does not have this issue because it does not provide EOS, and does not
guarantee that it will handle retransmitted non-idempotent operations correctly. Consequently, V3
outperformed V4.1p when there were more than 64 threads (Figure 2.11).

2.4.3 Directory Listing
We now turn to another common meta-data-intensive workload: listing directories. We used
Filebench’s directory-listing workload, which operates on a pre-allocated NFS directory tree that
contains 50,000 empty files and has a mean directory width of 5. Each client ran one Filebench
instance, which repeatedly picks a random subdirectory in the tree and lists its contents.

This workload is read-only, and showed behavior similar to that of reading small files (Sec-
tion 2.4.1) in that its performance depended heavily on client-side caching. Once all content was
cached, the only NFS requests were for cache revalidations. Figure 2.13 (log scale) shows the
throughput of single-threaded directory listing in networks with different delays. In general, V4.1p
performed slightly worse than V3. The biggest difference was in the zero-delay network, where
V4.1p was 15% slower. mountstats showed that V4.1p’s requests had longer round-trip times,
which implies that the server processed those requests slower than V3: 10% slower for READDIR,
27% for GETATTR, 33% for ACCESS, and 36% for LOOKUP. This result is predictable because the
V4.1p protocol, which is stateful and has more features (EOS, delegations, etc.), is substantially
more complex than V3. As we increased the network delay, the processing time of V4.1p became
less important: V4.1p’s performance was within 94–99% of V3. Note that Linux does not support
directory delegation.
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With 16 threads, V4.1p’s throughput was 95–101% of V3’s. Note that V4.1p’s asynchronous
RPC calls did not influence this workload much because most of this workload’s requests did not
mutate states. Only the state-mutating V4.1p requests are asynchronous: OPEN, CLOSE, LOCK,
and LOCKU. (WRITE is also asynchronous, but this workload does not have any WRITEs.)

2.5 NFSv4 Delegations
In this section, we discuss delegations, an advanced client-side caching mechanism that is a key
new feature of NFSv4. Caching is essential to good performance in any system, but in distributed
systems like NFS caching gives rise to consistency problems. V2 and V3 explicitly ignored strict
consistency [20, p. 10], but supported a limited form of validation via the GETATTR operation.
In practice, clients validate their cache contents frequently, causing extra server load and adding
significant delay in high-latency networks.

In V4, the cost of cache validation is reduced by letting a server delegate a file to a particu-
lar client for a limited time, allowing accesses to proceed at local speed. Until the delegation is
released or recalled, no other client is allowed to modify the file. This means a client need not
revalidate the cached attributes and contents of a file while holding the delegation of the file. If any
other clients want to perform conflicting operations, the server can recall the delegation using call-
backs via a server-to-client back-channel connection. Delegations are based on the observation that
file sharing is infrequent [107] and rarely concurrent [69]. Thus, they can boost performance most
of the time, although with performance penalty in the rare presence of concurrent and conflicting
file sharing.

Delegations have two types: open delegations of files, and directory delegations. The former
comes in either “read” or “write” variants. We will focus on read delegations of regular files be-
cause they are the simplest and most common type—and are also the only delegation type currently
supported in the Linux kernel [39].

2.5.1 Granting a Delegation
An open delegation is granted when a client opens a file with an appropriate flag. However, clients
must not assume that a delegation will be granted, because that choice is up to the server. If
a delegation is rejected, the server can explain its decision via flags in the open reply (e.g., lock
contention, unsupported delegation type). Even if a delegation is granted, the server is free to recall
it at any time via the back channel, which is a RPC channel that enables the NFS servers to notify
clients. Recalling a delegation may involve multiple clients and multiple messages, which may
lead to considerable delay. Thus, the decision to grant the delegation might be complex. However,
because Linux currently supports only file-read delegations, it uses a simpler decision model. The
delegation is granted if three conditions are met: (1) the back channel is working, (2) the client is
opening the file with O RDONLY, and (3) the file is not currently open for write by any client.

During our initial experiments we did not observe any delegations even when all three condi-
tions held. We traced the kernel using SystemTap and discovered that the Linux NFS server’s
implementation of delegations was outdated: it did not recognize new delegation flags introduced
by NFSv4.1. The effect was that if an NFS client got the filehandle of a file before the client
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Operation NFSv3 NFSv4.1 NFSv4.1
deleg. off deleg. on

OPEN 0 10, 001 1000
READ 10, 000 10, 000 1000
CLOSE 0 10, 001 1000
ACCESS 10, 003 9003 3
GETATTR 19, 003 19, 002 1
LOCK 10, 000 10, 000 0
LOCKU 10, 000 10, 000 0
LOOKUP 1002 2 2
FREE STATEID 0 10, 000 0
TOTAL 60,008 88,009 3009

Table 2.1: NFS operations performed by each client for NFSv3 and NFSv4.1 (delegations on
and off). Each NFSv4.1 operation represents a compound procedure. For clarity, we omit trivial
operations (e.g., PUTFH) in compounds. NFSv3’s LOCK and LOCKU come from the Network Lock
Manager (NLM).

opened the file (e.g., using stat), no delegation was granted. We fixed the problem with a kernel
patch, which has been accepted into the mainline Linux kernel.

2.5.2 Delegation Performance: Locked Reads
We previously showed the benefit of delegations in Figure 2.8, where delegations helped V4.1p
read small files 172× faster than V3. This improvement is due to the elimination of cache revali-
dation traffic; no communication with the server (GETATTRs) is needed to serve reads from cache.
Nevertheless, delegations can improve performance even further in workloads with file locking. To
quantify the benefits, we repeated the delegation experiment performed by Gulati [54] but scaled
it up. We pre-allocated 1000 4KB files in a shared NFS directory and then mounted it on the five
clients. Each client repeatedly opened each of the files in the shared NFS directory, locked it, read
the entire file, and then unlocked it. (Locking the file is a technique used to ensure an atomic read.)
After ten repetitions the client moved to the next file.

Table 2.1 shows the number of operations performed by V3 and by V4.1p with and without
delegation. Only V4.1p shows OPENs and CLOSEs because only V4 is stateful. When delegations
were on, V4.1p used only 1000 OPENs even though each client opened each file ten times. This
is because each client obtained a delegation on the first OPEN; the following nine were performed
locally. Note that in Table 2.1, without a delegation (for V3 and V4.1p with delegations off), each
application read incurred an expensive NFS READ operation even though the same reads were
repeated ten times. Repeated reads were not served from the client-side cache because of file
locking, which forces the client to revalidate the data.

Another cause of the difference in the number of READ operations in Table 2.1 is the timestamp
granularity on the NFS server. Traditionally, NFS provides close-to-open cache consistency [71].
Timestamps are updated at the server when a file is closed, and any client subsequently opening the
same file revalidates its local cache by checking its attributes with the server. If the locally-saved
timestamp of the file is out of date, the client’s cache of the file is invalidated. Unfortunately, some
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Figure 2.14: Running time of the locked-reads experiment (log10). Lower is better.

NFS servers offer only one-second granularity, which is too coarse for modern systems; clients
could miss intermediate changes made by other clients within one second. In this situation, NFS
locking provides stronger cache coherency by first checking the server’s timestamp granularity.
If the granularity is finer than one microsecond, the client revalidates the cache with GETATTR;
otherwise, the client invalidates the cache. Since the Linux in-kernel server uses a one-second
granularity, each read operation incurs a READ RPC request because the preceding LOCK has
invalidated the client’s local cache.

Invalidating an entire cached file can be expensive, since NFS is often used to store large files
such as virtual disk images [124], media files, etc. The problem is worsened by two factors:
(1) invalidation happens even when the client is simply acquiring read (not write) locks, and (2) a
file’s entire cache contents are invalidated even if the lock only applies to a single byte. In contrast,
the NFS client with delegation was able to satisfy nine of the ten repeated READs from the page
cache. There was no need to revalidate the cache at all because its validity was guaranteed by the
delegation.

Another major difference among the columns in Table 2.1 was the number of GETATTRs. In
the absence of delegation, GETATTRs were used for two purposes: to revalidate the cache upon
file open, and to update file meta-data upon read. The latter GETATTRs were needed because the
locking preceding the read invalidated both the data and meta-data caches for the locked file. A
potential optimization for V4.1p would be to have the client append a GETATTR to the LOCK in the
same compound, and let the server piggyback file attributes in its reply. This could save 10,000
GETATTR RPCs.

The remaining differences between the experiments with and without delegations were due to
locking. A LOCK/LOCKU pair is sent to the server when the client does not have a delegation.
Conversely, no NFS communication is needed for locking when a delegation exists. For V4.1p
with delegations off, one FREE STATEID follows each LOCKU to free the resource (stateid) used by
the lock at the server. (A potential optimization would be to append the FREE STATEID operation
to the same compound procedure that includes LOCKU; this could save another 10,000 RPCs.)

In total, delegations cut the number of V4.1p operations by over 29× (from 88K to 3K). This
enabled the original stateful and “chattier” V4.1p (with extra OPEN, CLOSE, and FREE STATEID

calls) to finish the same workload using only 5% of the requests used by V3. In terms of data
volume, V3 sent 3.8MB and received 43.7MB, whereas V4.1p with delegation sent 0.6MB and
received 4.5MB. Delegation helped V4.1p reduce the outgoing traffic by 6.3× and the incoming
traffic by 9.7×. As seen in Figure 2.14, these reductions translate to a 6–19× speedup in networks
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with 0–10ms latency.

2.5.3 Delegation Recall Impact
We have shown that delegations can effectively improve NFS performance when there is no conflict
among clients. To evaluate the overhead of conflicting delegations, we created two groups of NFS
clients: the Delegation Group (DG) grabs and holds NFS delegations on 1000 files by opening
them with the O RDONLY flag, while the Recall Group (RG), recalls those delegations by opening
the same files with O RDWR. To test scalability, we varied the number of RG clients from one to
four. For n clients in the DG, an RG open generated n recalls because each DG client’s delegation
had to be recalled separately.

We compared the cases when the DG clients were and were not holding delegations. Each DG
client needed two operations to respond to a recall: a DELEGRETURN to return the delegation, and
an OPEN to re-open the file (since the delegation was no longer valid).

For the RG client, the presence of a delegation incurred one additional NFS OPEN per file. The
first OPEN failed, returning an NFS4ERR DELAY error to tell the client to try again later because
the server needed to recall outstanding delegations. The second open was sent as a retry and
succeeded.

The running time of the experiment varied dramatically, from 0.2 seconds in the no-delegation
case to 100 seconds with delegation. This 500× delay was introduced by the RG client, which
failed in the first OPEN and retried it after a timeout. The initial timeout length is hard-coded to
100ms in the client kernel module (NFS4 POLL RETRY MIN in the Linux source code), and is
doubled every time the retry fails. This long timeout was the dominating factor in the experiment’s
running time.

To test delegation recall in networks with longer latencies, we repeated the experiment after
injecting network delays from 1–10ms. Under those conditions, the experiment’s running time
increased from 100s to 120s. With 10ms of extra network latency, the running time was still
dominated by the client’s retry timeout. However, when we increased the number of clients in DG
from one to four, the total running time did not change. This suggests the delegation recall works
well when there are several clients holding conflicting delegations at the same time.

We believe that a long initial timeout of 100ms is questionable considering that most SLAs
specify a latency of 10–100ms [4]. Also, because Linux does not support write delegations, Linux
NFS clients do not have any dirty data (of delegated files) to write back to the server, and thus
should be able to return delegations quickly. We believe it would be better to start with a much
shorter timeout; if that turns out to be too small, the client will back-off quickly anyway since the
timeout increases exponentially.

Recalling read delegations is relatively simple because the clients holding them have no dirty
data to write back to the server. For write delegations, the recall will be more difficult because the
amount of dirty data can be substantial—since the clients are free from network communication,
they are capable of writing data faster than in normal NFS scenarios. The cost of recalling write
delegations would be interesting to study when they become available.
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Figure 2.15: File Server throughput (varying network delay)
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Figure 2.16: Number of NFS requests made by the File Server

2.6 Macro-Workloads
We now turn to macro-workloads that mix data and meta-data operations. These are more complex
than micro-workloads, but also more closely match the real world. Our study used Filebench’s File
Server, Web Server, and Mail Server workloads [68].

2.6.1 The File Server Workload
The File Server workload includes opens, creates, reads, writes, appends, closes, stats, and deletes.
All dirty data is written back to the NFS server on close to enforce NFS’s close-to-open semantics.
We created one Filebench instance for each client and ran each experiment for 5 minutes. We used
the File Server workload’s default settings: each instance had 50 threads operating on 10,000 files
(in a dedicated NFS directory) with an average file size of 128KB, with the sizes chosen using
Filebench’s gamma function [136].

As shown in Figure 2.15, V4.1p had lower throughput than V3. Without any injected net-
work delay, V4.1p’s throughput was 12% lower because V4.1p is stateful and more talkative. To
maintain state, V4.1p did 3.5 million OPENs and CLOSEs (Figure 2.16), which was equivalent to
58% of all V3’s requests. Note that 0.6 million of the OPENs not only maintained states, but also
created files. Without considering OPEN and CLOSE, V4.1p and V3 made roughly the same num-
ber of requests: V4.1p sent 106% more GETATTRs than V3 did, but no CREATEs and 78% fewer
LOOKUPs.
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Figure 2.17: Web Server throughput (varying network delay).

V4’s verbosity hurts its performance, especially in high-latency networks. We observed the
same problems in other workloads such as small-file reading (Section 2.4.1), where V4 was 40%
slower than V3 with a single thread and a 10ms-delay network. Verbosity is the result of V4’s
stateful nature, and the V4 designers were aware of the issue. To reduce verbosity, V4 provides
compound procedures, which pack multiple NFS operations into one message. However, com-
pounds have not been implemented effectively in Linux (and other OSes): most contain only 2–4
often-trivial operations (e.g., SEQUENCE, PUTFH, and GETFH); and applications currently have no
ability to generate their own compounds. We believe that implementing effective compounds is
difficult for two reasons: (1) The POSIX API dictates a synchronous programming model: issue
one system call, wait, check the result, and only then issue the next call. (2) Without transaction
support, failure handling in compounds with many operations is fairly difficult.

In this File Server workload, even though V4.1p made a total of 56% more requests than V3,
V4.1p was only 12% slower because its asynchronous calls allowed 40–95% more outstanding
requests (as explained in Section 2.4.2). When we injected delay into the network (Figure 2.15),
V4.1p continued to perform slower than V3, by 8–18% depending on the delay. V4.1p’s delegation
mechanism did not help for the File Server workload because it contains mostly writes, and most
reads were cached (also Linux does not currently support write delegations).

Figure 2.15 also includes the unpatched V4.1. As we increased the network delay, V4.1p per-
formed increasingly better than V4.1, eventually reaching a 10.5× throughput improvement. We
conclude that our patch helps V4.1’s performance in both micro- and macro-workloads, especially
as network delays increase.

2.6.2 The Web Server Workload
Filebench’s Web Server workload emulates servicing HTTP requests: 100 threads repeatedly op-
erate on 1000 files, in a dedicated directory per client, representing HTML documents with a mean
size of 16KB. The workload reads 10 randomly-selected files in their entirety, and then appends
16KB to a log file that is shared among all threads, causing contention. We ran one Web Server
instance on each of the five NFS clients.

Figure 2.17 shows the throughput with different network delays. V4.1p was 25% slower than
V3 in the zero-delay network. The mountstats data showed that the average round-trip time
(RTT) of V4.1p’s requests was 19% greater than for V3. As the network delay increased, the
RPC RTT became overshadowed by the delay, and V4.1p’s performance became close to V3’s
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Figure 2.18: Web Server throughput in the zero-delay network (varying thread count per client).

and even slightly better (up to 2.6%). V4.1p’s longer RTT was due to its complexity and longer
processing time on the server side, as explained in Section 2.4.3. With longer network delays,
V4.1p’s performance picked up and matched V3’s because of its use of asynchronous calls.

To test delegations, we turned on and off the readonly flag of the Filebench workload, and
confirmed that setting readonly enabled delegations. In the zero-delay network, delegations
reduced the number of V4.1p’s getattr requests from over 8.7M to only 11K, and opens and
closes from over 8.8M to about 10K. In summary, delegations cut the total number of all NFS
requests by more than 10×. However, the substantial reduction in requests did not bring a corre-
sponding performance boost: the throughput increased by only 3% in the zero-delay network, and
actually decreased by 8% in the 1ms-delay situation. We were able to identify the problem as the
writes to the log file. With delegations, each Web Server thread finished the first 10 reads from
the client-side cache without any network communication, but then was blocked at the last write
operation.

To characterize the bottleneck, we varied the number of threads in the workload and repeated
the experiments with delegations both on and off. Figure 2.18 shows that delegations improved
V4.1p’s single-threaded performance by 7.4×, from 18 to 137 Kops/s. As the thread count in-
creased, the log write began to dominate and delegations’ benefit decreased, eventually making no
difference: and the two curves of V4.1p in Figure 2.18 converged. With delegations, V4.1p was
2.2× faster than V3 when using one thread. However, V4.1p began to slow down with 4 threads,
whereas V3 sped up and did not slow down until the thread number increased to 64. The eventual
slowdown of both V3 and V4.1p was because the system became overloaded when the log-writing
bottleneck was hit. However, V4.1p hit the bottleneck with fewer threads than V3 did because
V4.1p, with delegations, only performed repeated WRITEs, whereas V3 performed ten GETATTRs
(for cache revalidation) before each WRITE. With more than 32 threads, V4.1p’s performance was
also hurt by waiting for session slots (see Section 2.4.2).

This Web Server macro-workload demonstrated how the power of V4.1p’s delegations can be
limited by the absence of write delegations in the current version of Linux. Any real-world appli-
cation that is not purely read-only might quickly bottleneck on writes even though read delegations
can eliminate most NFS read and revalidation operations. However, write delegations will not help
if all clients are writing to a single file, such as a common log.
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2.6.3 The Mail Server Workload
Filebench’s Mail Server workload mimics mbox-style e-mail activities, including compose, re-
ceive, read, and delete. Each Mail Server instance has 16 threads that repeat the following sets of
operations on 1000 files in a flat directory: (1) create, write, fsync, and close a file (compose);
(2) open, read, append, fsync, and close a file (receive); (3) open, read, and close a file (read);
(4) delete a file (delete). The initial average file size was 16KB, but that could increase if ap-
pends were performed. We created a dedicated NFS directory for each NFS client, and launched
one Mail Server instance per client. We tested different numbers of NFS clients, in addition to
different network delays.

Figure 2.19 (note the log Y scale) presents the Mail Server throughput with different network
delays. Without delay, V4.1p and V3 had the same throughput; with 1–40ms delay, V4.1p was
1.3–1.4× faster. Three factors affected V4.1p’s performance: (1) V4.1p made more NFS requests
for the same amount of work (see Section 2.6.1); and (2) V4.1p’s operations were more complex
and had longer RPC round-trip times (see Section 2.4.3); but (3) V4.1p made many asynchronous
RPC calls and helped the networking algorithms coalesce RPC messages (see Section 2.4.1). Al-
though the first two factors hurt V4.1p’s performance, the third more than compensated for them.
Increasing the network delay did not change factor (1), but diminished the effect of (2) as the delay
gradually came to dominate the RPC RTT. Longer network delays also magnified the benefits of
factor (3) because longer round trips were mitigated by coalescing requests. Thus, V4.1p increas-
ingly outperformed V3 (1.3–1.4×) as the delay grew. V4.1p’s read delegations did not help in this
workload because most of its activities write files (reads are largely cached). This again shows the
potential benefit of write delegations, even though Linux does not currently support them.

Figure 2.20 shows the aggregate throughput of the Mail Server workload with different num-
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bers of NFS clients in the zero- and 10ms-delay networks. With zero delay, the aggregate through-
put increased linearly from 1 to 3 clients, but then slowed because the NFS server became heavily
loaded. An injected network delay of 10ms significantly reduced the NFS request rate: the server’s
load was much lighter, and although the aggregate throughput was lower, it increased linearly with
the number of clients.

2.7 Related Work
NFS versions 2 and 3 are popular and have been widely deployed and studied. Stern et al. per-
formed NFS benchmarking for multiple clients using nhfsstone [118]. Wittle and Keith designed
the LADDIS NFS workload that overcomes nhfsstone’s drawback, and measured NFS response
time and throughput under various loads [137]. Based on LADDIS, the SPECsfs suites were de-
signed to benchmark and compare the performance of different NFS server implementations [116].
Martin and Culler [77] studied NFS’s behavior on high performance networks. They found that
NFS servers were most sensitive to processor overhead, but insensitive to network bandwidth
due to the dominant effect of small meta-data operations. Ellard and Seltzer designed a simple
sequential-read workload to benchmark and improve NFS’s readahead algorithm [36]; they also
studied several complex NFS benchmarking issues including the ZCAV effect, disks’ I/O reorder-
ing, the unfairness of disk scheduling algorithms, and differences between NFS over TCP vs. UDP.
Boumenot conducted a detailed study of NFS performance problems [17] in Linux, and found that
the low throughput of Linux NFS was caused not by processor, disk, or network performance lim-
its, but by the NFS implementation’s sensitivity to network latency and lack of concurrency. Lever
et al. introduced a new sequential-write benchmark and used it to measure and improve the write
performance of Linux’s NFS client [70].

Most prior studies [17, 36, 70, 77, 116, 137] were about V2 and V3. NFS version 4, the latest
NFS major version, is dramatically different from previous versions, and is far less studied in the
literature. Prior work on V4 focuses almost exclusively on V4.0, which is quite different than
V4.1 due to the introduction of sessions, Exactly Once Semantics (EOS), and pNFS. Harrington
et al. summarized major NFS contributors’ efforts in testing the correctness and performance of
Linux’s V4.0 [9] implementation. Radkov et al. compared the performance of a prototype version
of V4.0 and iSCSI in IP-networked storage [100]. Martin [76] compared the file operation per-
formance between Linux V3 and V4.0; Kustarz [68] evaluated the performance of Solaris’s V4.0
implementation and compared it with V3. However, Martin and Kustarz studied only V4.0’s basic
file operations without exercising unique features such as statefulness and delegations. Hildebrand
and Honeyman explored the scalability of storage systems using pNFS, an important part of V4.1.
Eshel et al. [74] used V4.1 and pNFS to build Panache, a clustered file system disk cache that
shields applications from WAN latency and outages while using shared cloud storage.

Only a handful of authors have studied the delegation mechanisms provided by NFSv4. Bat-
sakis and Burns extended V4.0’s delegation model to improve the performance and recoverability
of NFS in computing clusters [11]. Gulati et al. built a V4.0 cache proxy, also using delegations, to
improve NFS’s performance in WANs [54]. However, both of these studies were concerned more
with enhancing NFS’s delegations to design new systems rather than evaluating the impact of stan-
dard delegations on performance. Moreover, they used V4.0 instead of V4.1. Although Panache is
based on V4.1, it revalidated its cache using the traditional method of checking timestamps of file

27



objects instead of using delegations.
As the latest minor version of V4, V4.1’s Linux implementation is still evolving [39]. To

the best of our knowledge there are no existing, comprehensive performance studies of Linux’s
NFSv4.1 implementation that cover its advanced features such as statefulness, sessions, and dele-
gations.

NFS’s delegations are partly inspired by Andrew File System (AFS). AFS stores and moves
files at the unit of whole files [57], and it breaks large files into smaller parts when necessary. AFS
clients cache files locally and push dirty data back to the server only when files are closed. AFS
clients re-validate cached data when clients use the data for the first time after restart; AFS servers
will invalidate clients’ cache with update notification when files are changed.

2.8 Conclusions
We have presented a comprehensive benchmarking study of Linux’s NFSv4.1 implementation by
comparison to NFSv3. Our study found that: (1) V4.1’s read delegations can effectively avoid
cache revalidation and help it perform up to 172× faster than V3. (2) Read delegations alone, how-
ever, are not enough to significantly improve the overall performance of realistic macro-workloads
because V4.1 might still be bottlenecked by write operations. Therefore, we believe that write
delegations are needed to maximize the benefits of delegations. (3) Moreover, delegations should
be avoided in workloads that share data, since conflicts can incur a delay of at least 100ms. (4) We
found that V4.1’s stateful nature makes it more talkative than V3, which hurts V4.1’s performance
and makes it slower in low-latency networks (e.g., LANs). Also, V4.1’s compound procedures,
which were designed to help the problem, are not in practice effective. (5) However, in high-latency
networks (e.g., WANs), V4.1’s performed comparably to and even better than V3’s since V4.1’s
statefulness permits higher concurrency through asynchronous RPC calls. For highly threaded
workloads, however, V4.1 can be bottlenecked by the number of session slots. (6) We also showed
that NFS’s interactions with the networking and storage subsystems are complex, and system pa-
rameters should be tuned carefully to achieve high NFS throughput. (7) We identified a Hash-Cast
networking problem that causes unfairness among NFS clients, and presented a solution. (8) Lastly,
we made improvements to Linux’s V4.1 implementation that boost its performance by up to 11×.

With this comprehensive benchmarking study, we conclude that NFSv4.1’s performance is
comparable to NFSv3. Therefore, we plan to support NFSv4.1 in Kurma. We also believe that
NFSv4.1’s compound procedures, which are currently woefully underutilized, hold much promise
for significant performance improvement. We plan to implement more advanced compounds, such
as transactional NFS compounds that can coalesce many operations and execute them atomically
on the server. With transactional compounds, programmers, instead of waiting and then checking
the status of each operation, can perform many operations at once and use exception handlers to
deal with failures. Such a design could greatly simplify programming and improve performance at
the same time.

2.8.1 Limitations
This benchmarking study has two limitations: (1) Most of our workloads did not share files
among clients. Because sharing is infrequent in the real world [107], it is critical that any sharing
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be representative. One solution would be to replay multi-client NFS traces from real workloads,
but this task is challenging in a distributed environment. (2) Our WAN emulation using netem
was simple, and did not consider harsh packet loss, intricate delays, or complete outages in real
networks.
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Chapter 3

SeMiNAS: Single-Cloud Secure
Middlewares

3.1 Introduction
Cloud computing is becoming increasingly popular as utility computing is being gradually real-
ized, but many organizations still cannot enjoy the advantages of public clouds due to security
concerns, legacy infrastructure, and high performance requirement (especially low latency). Many
researchers tried to secure public clouds, but few studied the unique security problems of hybrid
clouds. Kurma is our proposed hybrid cloud solution to the storage aspect of these problems.

In Chapter 2, we decided to use NFSv4.1 as Kurma’s storage protocol because of NFSv4.1’s
advanced features such as sessions, delegations, and compound procedures. We discuss an early
prototype of Kurma in this chapter. We name the prototype SeMiNAS—Secure Middlewares for
cloud-backed Network Attached Storage. SeMiNAS is the first step towards our ultimate develop-
ment of Kurma; it has the same threat model, an analogous architecture, and similar design goals.
Both SeMiNAS and Kurma appear as NFS service providers to clients, and include on-premises
proxies for security enhancement and performance improvement. The high-level architectures of
SeMiNAS and Kurma are similar: they differ mostly in their proxy architecture and components.
SeMiNAS provides the same caching and security features including confidentiality, integrity, and
malware detection. SeMiNAS’s discussions of complex interactions among those security and
caching features is also applicable to Kurma. However, SeMiNAS is limited in several aspects
and makes several simplifying assumptions. For example, SeMiNAS uses a single public cloud as
back-end and is not secure against replay attacks; and it requires new NFS features not standard-
ized yet or available from cloud providers. We propose our solutions to those limitations later in
Chapter 4.

SeMiNAS consists of on-premises proxies that allow clients to outsource data securely to
clouds using the same file system API as traditional NAS appliances. As shown in Figure 3.1,
SeMiNAS inherits many advantages from the popular middleware architecture, as exemplified
by network firewalls. For instance, SeMiNAS minimizes migration cost and can be deployed with
only minimal changes to existing clients and servers. Managed by trusted security personnel, SeM-
iNAS can protect data from not only untrusted cloud servers but also semi-trusted clients, which
might have been accidentally compromised by virus infection. Because accesses to cloud storage
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Figure 3.1: SeMiNAS high level architecture

servers incur long latency over WANs, SeMiNAS also caches cloud data to improve performance.
SeMiNAS is deployed in the same local-area network with clients and thus can significantly reduce
access latency to the cloud.

SeMiNAS provides end-to-end data integrity and confidentiality using authenticated encryption
before sending data to cloud. Data stays in encrypted form in the cloud, and is not decrypted until
SeMiNAS retrieves the data from clouds on clients’ behalf. End-to-end integrity and confidentiality
protects data from not only potential attacks during data transmission over the Internet but also
misbehaving cloud servers and storage devices. Using a robust cryptographic scheme for key
exchange, SeMiNAS can share files securely among multiple geographically distributed proxies.
SeMiNAS also performs anti-virus scanning to catch infected clients and to stop the spread of
viruses.

SeMiNAS reduces performance overhead using three mechanisms. First, it uses an authen-
ticated encryption scheme that embeds Message Authentication Code (MAC) and other security
meta-data into the already existing Data Integrity Field (DIF) of modern storage devices [32].
Thus, SeMiNAS minimizes proxy-to-cloud communication, which goes through the Internet and
is usually the link with the highest latency. Second, SeMiNAS facilitates flexible trade-off between
performance and security by allowing each security feature (integrity, encryption, and anti-virus)
to be enabled and configured separately according to security policies. Some files (e.g., public
binary executables), need only integrity and anti-virus, whereas some other files (e.g., media files),
need only integrity and encryption. Third, SeMiNAS contains a persistent write-back cache that
stores recently used data and coalesces writes to server. This reduces the communication to re-
mote servers and allows many operations to be handled locally. Because interactions between the
caching and security modules have significant and complex effects, SeMiNAS carefully integrates
caching with the security modules to pursue the right balance between security and performance.

We implemented and evaluated SeMiNAS to ensure it achieves its design goals. To study the
trade-off between security and performance, we measured SeMiNAS’ performance and security
overhead under different security policies. Adding integrity to caching, SeMiNAS introduces an
overhead of 9–43% for micro-workloads; when caching, integrity, confidentiality, and anti-virus
are all enabled, SeMiNAS introduces a moderate overhead of 5–55% for macro-workloads.

This chapter makes three contributions: (1) a security middleware system that allows NAS
clients to use cloud storage as back-end in a secure, seamless, and flexible manner; (2) a study of
the trade-off between performance and security under different security policies and workloads;
and (3) insights into complex interactions between caching and security features, including in-
tegrity, confidentiality, and anti-virus.
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The rest of this chapter is organized as follows. Section 3.2 presents the motivation behind
SeMiNAS. Section 3.3 details SeMiNAS’ design including its threat model, design goals, architec-
ture, and security and caching features. Section 3.4 describes the implementation of our SeMiNAS
prototype. Section 3.5 evaluates the performances of SeMiNAS under different security policies
and workloads. Section 3.6 discusses related work and Section 3.7 concludes.

3.2 Background and Motivation
We present the background and motivation behind SeMiNAS by asking three questions: (1) Why
a security middleware such as SeMiNAS is needed in cloud environments? (2) Why flexible trade-
off between security and performance is important? (3) Why a file system API to the cloud is
preferable to a RESTful API?

3.2.1 A secure middleware for the cloud
Security concerns about outsourcing data to third-party cloud providers are well warranted for three
reasons. First, the surface area of exploitation and vulnerability increases significantly with public
communication channel. Second, storage devices are managed by cloud providers in a cloudy
(opaque) manner which begets uncertainty and mistrust. Third, even if the providers themselves
are trustworthy, other cloud tenants, with whom customers may share physical resources, may be
malicious.

Besides security concerns, performance and legacy infrastructure are other factors impeding
the adoption of public cloud. A solution to this problem is the hybrid cloud model, where a portion
of computing and storage goes to public cloud while the rest remains on-premises (private cloud)
for stronger security and better performance. SeMiNAS fits this hybrid cloud model and is an on-
premises file system proxy that protects data integrity and confidentiality from the public cloud.

Despite being shielded from many outside attacks, on-premises clients are still susceptible to
other security threats, with malware being most notorious threat [103]. Moreover, there are usually
a large number of clients making it difficult to secure and trust all of them. A consolidated secure
proxy is convenient to enforce security policies at both untrusted ends.

3.2.2 Security vs. performance
A key incentive for cloud storage is its low total cost of ownership, but extra measures to secure
cloud data do not come for free. Some researchers [24] argue that encryption is too expensive to
justify storing encrypted data on the cloud, whereas others [1, 132] claim new hardware accelera-
tion makes encryption viable and cheap for cloud storage. These debates highlight the importance
of reducing performance overhead when securing cloud storage.

While performance can frequently be quantified by throughput or latency, measuring security is
more difficult and often depends on the threat model and the workload. One widely used indicator
of the security level of a system is the set of security features supported (e.g., integrity, confidential-
ity, authentication, anti-virus, etc.). For example, HTTP has no security feature, whereas HTTPS
provides authentication, integrity, and confidentiality. More subsets of security features enable
more flexible trade-off between security and performance. Providing only integrity, HTTPI [25,
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113] is enough for many applications (e.g., video streaming) and almost as fast as HTTP. To let
applications find the right balance between security and performance, SeMiNAS allows security
features to be used separately.

3.2.3 File System APIs vs. RESTful APIs
Since Network-Attached Storage (NAS) was the most popular enterprise storage solution [123]
before the cloud era, SeMiNAS provides a file system API to clients so that legacy applications
based on NAS continue to work unchanged. This minimizes the migration cost while enjoying the
advantages of cloud storage. SeMiNAS uses NFS, and supports both NFSv3 and NFSv4, offering
compatibility with old applications and new features of NFSv4.

SeMiNAS also uses NFS to talk to cloud servers although many cloud providers currently
offer only RESTful GET/PUT APIs [6]. Compared to vendor-specific RESTful APIs, it is more
convenient to use a pervasive, open, and standard protocol to seamlessly talk to private and public
clouds. As more applications are deployed in clouds, rudimentary RESTful APIs begin to fall short
of functionalities to support complex systems [95]. In contrast, file system APIs, with much richer
semantics, can significantly simplify application development and provide advanced optimization
opportunities such as pNFS [107] and server-side copying [120]. Using a file system API is a
growing trend as seen by the recent cloud offering of the NFSv4-based Amazon Elastic File System
(EFS) [60].

File system APIs also offer stronger consistency guarantees than RESTful APIs do. Many early
cloud storage systems promise only eventual consistency [28], which offloads tough questions such
as “what if the loaded data are woefully out-dated” and “what if we read a totally different object
that has been deleted and re-created” onto cloud application developers. One big challenge of weak
consistency is conflicting changes, the reconciliation of which is difficult and often has to resort
to human intervention. As technology advances with innovations, increasingly more cloud storage
systems begin to provide strong consistency [19, 26, 126]. These systems make file system cloud
APIs not only feasible but also more desirable than RESTful APIs.

Still, the performance of NFS over a WAN will be “bounded by the speed of light” [130] if
each file operation incurs multiple round trips in the WAN, but a caching proxy can considerably
accelerate performance as was demonstrated in both academia [74] and industry [104]. The per-
formance acceleration of an NFS caching proxy can be particularly significant with the help of
NFSv4 delegations—a client caching mechanism that enables local file operations without com-
munication to remote NFS servers. We have showed in Chapter 2 that delegations can reduce
the number of NFS messages by almost 30×. Delegations do not compromise NFS’s close-to-
open consistency [107]; they are effective as long as concurrent and conflicting file sharing among
clients is rare, which is often true [69].

3.3 SeMiNAS Design
We present the design of SeMiNAS including its threat model, design goals, architecture, caching,
and security features.
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3.3.1 Threat Model
Our threat model reflects the settings of an enterprise office or an academic laboratory where clients
access cloud data via a NAS proxy (see Figure 3.1). We discuss the trustworthiness of the cloud,
clients, and the proxy with regard to security properties such as availability and integrity.

The Cloud. We do not trust the cloud in terms of confidentiality and integrity. It is risky to put
any sensible data in plaintext format considering threats both inside and outside the cloud [8]. Since
communication to public clouds goes through the Internet, plaintext data is vulnerable to man-in-
the-middle attacks. Even if the communication is protected by encryption, storing plaintext data
on cloud servers is still dangerous because the storage device may be shared with other malicious
tenants. The same is true for data integrity: attackers inside and outside the cloud may covertly
tamper with the data. However, we think cloud availability is a smaller concern. High availability
is an important trait that makes cloud attractive: major cloud services had availability higher than
four nines (99.99%) [138]. SeMiNAS assumes the cloud provider is always available.

Clients. Clients are semi-trusted. Clients are usually operated by employees of the organization,
and are generally trustworthy if proper access control is enforced. SeMiNAS supports NFSv4 and
thus can enforce access control using traditional mode bits and advanced ACLs [107]. However,
clients are not fully trusted because they may be infected by malware and be compromised by
intrusions [103]. This requires SeMiNAS to scan the data written by clients in order to detect
infected clients.

The Middleware. The proxies of SeMiNAS are fully trusted. SeMiNAS is the source of trust
and provides centralized and consolidated security services. Physically, the proxy is a small clus-
ter of computers and appliances, which can fit in a guarded and monitored machine room. Thus,
securing the proxy is easier than securing all clients that might scatter over multiple buildings. An
organization can also dedicate experienced security personnel to administer the middleware, mak-
ing it more resilient to security threats. We also trust that only SeMiNAS proxies can authenticate
themselves to the cloud NFS servers using RPCSEC GSS [35]; therefore, adversaries cannot fake
a proxy.

3.3.2 Design Goals
We designed SeMiNAS to achieve the following four goals, ordered by descending importance:

• High security: SeMiNAS should be secure against attacks in its threat model. It should
ensure integrity and confidentiality to data stored in the cloud, and be immune to malware
from clients.

• Low overhead: For each configuration, SeMiNAS should minimize the performance impact
of the security features by using a low-overhead security scheme and effectively caching
data.

• Flexibility: SeMiNAS should be configurable to enforce a wide range of security policies.
Security can hence be traded for performance according to security policies.
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Figure 3.2: SeMiNAS layered architecture

• Simplicity: SeMiNAS should have a simple architecture that eases development and main-
tenance.

3.3.3 Architecture
Figure 3.2 shows the architecture of SeMiNAS, where we use a stackable file system architecture
to achieve the design goals. Stackable file systems, such as Linux’s UnionFS [139] and Over-
layFS [18], are a popular technique to add new functionalities to existing file systems. Stackable
file systems are flexible for three reasons: (1) they can intercept all file operations including
ioctls; (2) they can be stacked on top of any other file systems (e.g., ext4 and NFS); and
(3) the stacking can happen in any order to achieve a wide range of functionalities. Stackable file
systems are simpler than standalone file systems because they can use existing unmodified file sys-
tems as building blocks. Stackable file systems can also achieve high security as shown in previous
studies [55, 62, 85, 140].

A SeMiNAS proxy acts as an NFS server to clients, and as a client to remote cloud servers.
Internally, SeMiNAS consists of multiple stackable file system layers. They all sit between the up-
per NFS layer and the lower cloud layer. The upper NFS layer handles NFS requests from clients;
the lower cloud layer performs file system operations to cloud servers. A client writes a file by
first sending an NFS request to SeMiNAS. SeMiNAS scans the file (for malware detection), then
simultaneously encrypts and authenticates the data to generate ciphertext and Message Authenti-
cation Codes (MACs). After that, SeMiNAS sends the ciphertext and MACs to the cloud. File
reading happens in reverse. SeMiNAS simultaneously authenticates and decrypts the data from
the ciphertext and MACs, but scans the data again only if the database of the anti-virus engine was
updated.

In addition to the security layers, SeMiNAS also contains a persistent caching layer. Caching
is indispensable to reduce the performance overhead so that security measures are practical when
using a cloud back-end. However, the interactions between caching and the security layers are
complex and have significant performance ramifications. Putting the caching layer between the
anti-virus and authenticated-encryption layer is the result of a trade-off study, which we detail
next.
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3.3.3.1 Mixing Caching and Security Layers

Mixing the caching and the security layers is more complex than the simplest alternative, which is
to put the caching layer all the way below or above all security layers. But both ordering turned
out to be suboptimal in terms of security and performance. Stacking the caching layer below the
security layers (i.e., closer to the cloud) means that data is cached in ciphertext format. Each
cache hit incurs extra decryption and authentication, adding substantial performance overheads
considering that intense computation is added to the fast path. Nevertheless, this ordering has
the benefit of protecting accidental data corruption (because of, e.g., device driver bug or disk
corruptions) that may happen in the persistent cache.

The biggest problem of putting caching above the security layers (i.e., closer to clients) is that
the cache may contain virus-infected data. When the anti-virus layer is below cache, viruses cannot
be caught until dirty cached data is written back; other clients may read the dirty cache and get
infected. Using a write-through cache instead of a write-back cache alleviates this problem but
at the expense of worse performance. Still, a write-back cache does not solve the problem, and
reading infected data is still possible from the dirty page cache in RAM.

Stacking the caching layer above security layers also suffers from bad performance, especially
for anti-virus scanning. When scanning a small write of a large file, the anti-virus engine may
need to read other parts of the file and introduces extra I/O to the cloud. Even if the needed data is
cached, the security layers cannot access the cached data without violating the layered architecture.
Yet another problem is the difficulty of re-checking cached files after the malware database is
updated. One plausible solution is to invalidate the cache upon each update, but invalidating cache
is expensive as malware databases are updated frequently, nowadays hourly or even faster.

Conversely, “sandwiching” the caching layer in the middle (see Figure 3.2) solves the afore-
mentioned problems. Putting the anti-virus layer closer to clients, and the authenticated-encryption
layer closer to the cloud, also meets with our threat model: authentication and encryption protect
integrity and confidentiality from the cloud; and anti-virus prevents malware from clients.

Before arriving at the solution seen in Figure 3.2, we constructed detailed flow charts of several
possible permutations that mix security and caching layers, and analyzed each thoroughly. The
detailed analysis and discussion of those alternatives are presented in a technical report [93].

3.3.4 Integrity and Confidentiality
As shown in Figure 3.2, SeMiNAS uses an authenticated-encryption file system layer to simulta-
neously provide data integrity, confidentiality, and authenticity [135]. Using one layer for multiple
security features slightly complicates SeMiNAS’s layered architecture. However, it is desirable for
strong security because combining an encryption layer and an authentication may be susceptible to
security flaws. There are three ways to combine encryption and authentication: (1) Authenticate
then Encrypt (AtE) as used in SSL; (2) Encrypt then Authenticate (EtA) as used in IPSec; and
(3) Encrypt and Authenticate (E&A) as used SSH. Despite being used by popular security proto-
cols (SSL and SSH), both AtE and E&A turned out to be “not generically secure” [66]. Only one
out of the three combinations (i.e., EtA) is considered to be secure [78]. The security ramifications
of these combinations are rather complex [14]: even experts can make mistakes [67]. Therefore,
SeMiNAS avoids separating encryption and authentication, and instead uses one of the standard
authenticated encryption schemes that perform both operations simultaneously.
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Out of the ISO-standardized authenticated encryption modes, we chose the Galois/Counter
Mode (GCM) because of its superior performance [27] to other modes such as CCM [133] and
EAX [13]. As shown in Figure 3.3, GCM accepts three inputs and produces two outputs. The three
inputs are the plaintext to be both authenticated and encrypted (PDATA), additional data only to be
authenticated (ADATA), and a key; the two outputs are ciphertext and a Message Authentication
Code (MAC). Out of the three inputs, either PDATA or ADATA can be absent. This lets SeMiNAS
achieve integrity but not encryption by leaving PDATA empty and using the concatenation of data
and meta-data as ADATA.

On write operations, GCM uses the data to be written as PDATA and additional security meta-
data (discussed in Section 3.3.4.1) as ADATA. GCM outputs the ciphertext and MAC, which are
then written to the cloud. On read operations, SeMiNAS retrieves the ciphertext and MAC, and
then simultaneously verifies the MAC and decrypts the ciphertext. SeMiNAS thus achieves end-
to-end data integrity and confidentiality as the protection covers both the transport channel and the
cloud storage stack.

3.3.4.1 Meta-Data Management

SeMiNAS divides a file into fix-sized data blocks (e.g., 16KB) and applies GCM to each block
(with padding if necessary). SeMiNAS maintains per-file and per-block meta-data to provide se-
curity while enabling file sharing among multiple SeMiNAS instances deployed at multiple sites
of an organization. As shown in Figure 3.4, the most important per-file meta-data is the encrypted
key pairs which we discuss in Section 3.3.4.2; others are authenticated and encrypted file attributes
including real file size, unique file ID, flags. The per-block meta-data includes the 16-byte-long
MAC used for authentication, and an 8-byte-long block offset used for defending the attack of
swapping blocks. SeMiNAS can also detect inter-file swapping of blocks because each file has a
unique key.

Storing the per-file meta-data is simple, and SeMiNAS uses a file header for that. However,
storing the per-block meta-data is more complex. One method is to write the concatenation of each
encrypted block and its MAC as one file in the cloud (referred as Cloud Block File, CBF, there-
after). This method not only burdens file system meta-data management with many small files [50],
but it also negates the benefits of using a file system API, including file-level strong consistency
provided by file locking. Although locking a file is still possible by locking all underlying CBFs
in a deadlock-free order (e.g., increasingly by block offset), it is complex and infeasible for large
files considering the limit of open files and the large number of round trips across the Internet.

Another method to store the per-block meta-data is to use an extra cloud file for all per-block
meta-data of each file. However, this is suboptimal, especially considering the high latency of
cloud accesses, because writing one block incurs two NFS requests to the cloud. With compound
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operations [107], NFSv4 has the potential to avoid this problem by combining the two requests
into one compound. Unfortunately, compounding is not effective in practice [21].

Yet another method is to map one block to a larger block in the cloud file. For example, a file
with ten 16KB blocks corresponds to a cloud file with ten slightly larger blocks (i.e., 16KB+N
where N is the size of the per-block meta-data). This method is free from the problems of the
other two, but its performance still suffers from extra read-modify-update operations caused by
breaking block alignment. Using larger block sizes (e.g., 256KB instead of 16KB) alleviates this
problem by having fewer extra read-modify-update operations, but it has the side effect of making
each extra operation more expensive.

SeMiNAS uses a better alternative that does not have any of the aforementioned problems. It
leverages the Data Integrity eXtensions (DIX) [31, 32], a trend of making the once-hidden Data
Integrity Fields (DIF) of direct access storage devices available to applications (Figure 3.5). DIX
effectively extends the disk sector size from 512 bytes to 520 bytes by adding eight DIF bytes.
The DIF bytes have long existed inside disks, but were used only internally for checksums. Flash
devices also have similar checksum bytes in the out-of-band storage. However, internal checksums
cannot protect the software storage stack, which is becoming deeper, more complex, and thus more
error-prone [10, 73], especially due to virtualization. Extending DIF to protect the upper layers of
the storage stack is a promising solution.

With DIX, OSes are now able to use these protection bytes [16], and SeMiNAS implements an
existing proposal to extend DIX further to NFSv4 [92]. SeMiNAS saves the per-block meta-data
to the DIF bytes of the block. To accommodate the 24 bytes per-block meta-data, we require the
block to be at least 2KB large, because each sector uses at least two DIF bytes by itself for an
internal checksum and provides at most six DIF bytes for applications.
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3.3.4.2 Key Management

Key management is critical to achieve strong security. SeMiNAS uses a master key pair (MK) per
SeMiNAS instance (usually in the form of a NAS appliance), and a per-file symmetric encryption
key (FK). MK is used for asymmetric encryption (RSA), and consists of a public key (MuK) and
a private key (MrK). The public keys are exchanged among all instances manually by security
personnel. This is feasible because one geographic site usually has only one SeMiNAS instance,
and key exchange is only needed when opening an office in a new site. This scheme has the
advantage of not relying on any third-party for public key distribution. Each file also stores a
randomly generated initialization vector (IV) in its header. For each block, SeMiNAS added this
IV with the block offset to generate a unique IV.

Because each SeMiNAS instance maintains the MuKs of all other instances, the file keys (FKs)
can be shared among all SeMiNAS instances under the protection of MuKs. When creating a file,
a SeMiNAS instance (creator) generates an FK. Then for each SeMiNAS instance with which the
creator is sharing the file (accessor), the creator encrypts the FK using the accessor’s public key
(MuK) with the RSA algorithm, and generates a 〈SID, EFK〉 pair where SID is the unique ID of
the accessor and EFK is the encrypted FK. All the 〈SID, EFK〉 pairs are then stored in the file
header. With the upcoming sparse file support [120], the file header can reserve sufficiently large
space with a hole following the header. Therefore, adding a new SeMiNAS instance need only add
its 〈SID, EFK〉 in the header by filling the hole without shifting the file data. When opening a file,
a SeMiNAS instance, which needs to be an accessor of the file, first finds its 〈SID, EFK〉 pair in
the header, and then it retrieves the file key FK by decrypting the EFK using its private key (MrK).

3.3.5 Malware Detection
SeMiNAS uses an anti-virus file system layer for malware detection. Malware files can be identi-
fied in two ways. One is to search malware patterns in file contents; the other way is to match the
hash values (e.g., MD5) of files against the hash values of known malware. Searching patterns has
lower overhead than matching hash values because only the new content (and its adjacent old con-
tent in case of multi-part patterns) have to be scanned upon writes [85], instead of the whole file.
However, partial file scanning is not secure because the vast majority of malware are identified by
hash values. For example, hash-based signatures account for more than 99% of all the signatures
of the open source ClamAV [65] malware database. Thus, SeMiNAS scans whole files, and detects
malware using both patterns and hash values.

Because SeMiNAS uses file hash values for malware detection, it needs to compute the hash
values every time files are changed. This is expensive because the whole file has to be read again.
One optimization is to defer the scanning until file close so that a sequence of writes following
one file open incur only one scanning instead of multiple scanning. If the OS flushes the infected
dirty data before file close, this optimization may allow the malware sneak in before catching it.
However, this is not a problem for SeMiNAS because the write-back cache does not write dirty
data back to cloud until file close. Unfortunately, other clients in the same SeMiNAS instance may
still read the infected dirty data from the memory or the local cache. To avoid this, SeMiNAS
immediately scans a dirty file and makes sure the file is clean before letting any read operation
proceed.

Scanning only small files for malware detection is a common practice. For example, Google
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Drive only scans files smaller than 25MB, and almost all online malware detection services set
file size limits from 1–40MB [109]. Therefore, SeMiNAS uses a configurable parameter as the
file size threshold, and only scans files smaller than the threshold. When a file is found to be
infected, SeMiNAS, depending on the security policy configuration, either returns an error to the
client and purges the cache, or returns success to the client and secretly quarantines the infected
file as forensic evidence without really writing it to the cloud.

Because SeMiNAS ensures file integrity, the cloud could not inject malware without being
caught. Therefore, anti-virus scanning is normally not needed when reading files. However, it
becomes necessary when the malware database is updated. Otherwise, new malware that may have
snuck in before the malware database was updated may spread further (e.g., “zero-day” malware).
SeMiNAS stores the database version of the latest scanning in the file header, and incrementally
re-scans the file on reads as well if the database is out-of-date.

3.3.6 Caching
SeMiNAS’s caching file system layer maintains a cache of recently used file data blocks, so that
hot data can be read in the low-latency on-premises network without communicating with the
cloud. The caching layer is designed to be a write-back cache, to minimize writes to the cloud
as well. Being write-back, the cache is persistent because some NFS requests—WRITEs with the
stable flag, and COMMITs—require dirty data be flushed to “stable storage” [110] before replying.
Because the NFS protocol demands stable writes to survive server crashes, the cache layer also
maintains additional meta-data in stable storage to ensures correct crash recovery. The meta-data
includes a list of dirty files and a per-block dirty flag to distinguish dirty blocks from clean blocks.

To maintain NFS’s close-to-open semantics, Kurma revalidates the cache when opening a file.
To tell whether the cache is still valid, Kurma compares the timestamp of the cached content with
the timestamp of the remote file. If Kurma detects the cache content have changed, it invalidates
the cache. Kurma also flushes dirty cache of a file back to the cloud NFS server when closing the
file.

For each cached file, SeMiNAS maintains a sparse file of the same size in the proxy’s local
file system. Insertion of file blocks are performed by writing to the corresponding blocks of the
sparse files. Evictions are done by punching holes at the corresponding locations using Linux’s
fallocate system call. This design delegates file block management to the local file system,
and thus significantly simplifies the caching layer. SeMiNAS also stores the crash recovery meta-
data of each file in a local file. The caching layer does not explicitly keep hot data blocks in
memory, but implicitly does so by relying on the OS’s page cache.

When holding a write delegation of a file, a SeMiNAS instance does not have to write cached
dirty blocks of the file back to the cloud until the delegation is recalled. Without a write delegation,
SeMiNAS has to write dirty data backs to the cloud upon file close to maintain NFS’s close-to-
open consistency. To avoid bursty I/O requests and long latency upon delegation recall or file close,
SeMiNAS also allows dirty data to be written back periodically at a configurable interval.
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3.4 Implementation
We have implemented a prototype of SeMiNAS in C and C++ on Linux. We have tested our imple-
mentation thoroughly using functional unit tests and ensured our prototype passed all xfstests [141]
cases that are applicable to NFS. We present the technical background and the implementation of
the security and caching features.

3.4.1 NFS-Ganesha
Our prototype is based on NFS-Ganesha [29,30,49], an open-source user-land NFS server that sup-
ports NFS v3, v4, and v4.1. NFS-Ganesha provides a generic interface to file system implementa-
tions with a File System Abstraction Layer (FSAL), which is similar to a Virtual File System (VFS)
in Linux. With different FSAL implementations, NFS-Ganesha can provide NFS services to clients
using different back-ends such as local and distributed file systems. NFS-Ganesha’s FSAL imple-
mentations include FSAL VFS that uses a local file system as back-end, and FSAL PROXY that uses
another NFS server as back-end. We use FSAL VFS for the cloud NFS server, and FSAL PROXY

for our secure proxy.
Like their stackable counterparts in Linux [144], FSALs can also be stacked to add features in

a modular manner. For example, an FSAL for encryption can be stacked on top of FSAL PROXY.
NFS-Ganesha originally allowed only one stackable layer; we added the support of multiple stack-
able layers. We have also improved FSAL PROXY by fixing bugs and optimizing performance.
NFS-Ganesha configures each exported directory and its backing FSAL separately in a configura-
tion file, allowing SeMiNAS to specify security policies for each exported directory.

3.4.2 Authenticated Encryption
We implemented SeMiNAS’s authenticated encryption in an auth-encrypt FSAL layer. We used
cryptopp as our cryptographic library because it supports a wide range of cryptographic schemes
such as AES, GCM, and VMAC [125]. We used AES as the symmetric key cryptographic block ci-
pher for GCM. We implemented the NFS end-to-end data integrity extension [92] in NFS-Ganesha
so that ciphertext and the security meta-data (MAC, etc.) can be transmitted together between
the proxy and the cloud. First, we implemented the READ PLUS and WRITE PLUS operations
of NFSv4.2 [120] in NFS-Ganesha (which does not support NFSv4.2 as of this writing) because
the extension [92] are based on these two new operations. Then, at the proxy side, we changed
FSAL PROXY to use these two operations for communications with the cloud NFS server (Fig-
ure 3.5). A WRITE PLUS (READ PLUS) operation writes (reads) the ciphertext and security meta-
data in one request without extra round trips over the Internet. Lastly, at the cloud side (running
NFS-Ganesha FSAL VFS), we changed FSAL VFS to use WRITE PLUS and READ PLUS, and to
write the ciphertext and security meta-data together to storage devices. Currently, Linux does not
have system calls to pass file data and their DIF bytes from user space to kernel; so we used a DIX
kernel patchset [97] after we fixed a few bugs.

We implemented two performance optimizations in the auth-encrypt FSAL. First, we cache
the file key (FK) and the 〈SID, EFK〉 pairs in memory to reduce the frequency of expensive RSA
decryption of FKs. This is safe because the auth-encrypted FSAL runs in the trusted proxy. Second,

41



Language Files Comment Code
C 14 841 3,209
C++ 48 589 6,435
C/C++ Header 50 1,574 2,976
CMake 9 15 230
Total 121 3,019 12,850

Table 3.1: Lines of code of the SeMiNAS prototype

we use the faster (3.2× on our testbed) VMAC [27, 125] instead of GCM when only integrity (but
not encryption) was required.

3.4.3 Malware Detection
We implemented SeMiNAS’s malware detection using ClamAV [65]. Vanilla ClamAV accepts a
file path or a file descriptor as input and scans the entire file. Considering the common practice of
scanning only small files for malware [109], we modified ClamAV and added a scanning function
to accept a memory buffer, which contains the data of a whole file. This function has the advantage
of not having to read a whole file again when the file (or a part of it) is already loaded in memory
(e.g., when a file is being overwritten). As an optimization discussed in Section 3.3.5, malware
detection can be deferred to file close, when the dirty file is flushed to the cloud. However, a dirty
file can also be flushed periodically before file close in order to avoid bursty I/O requests. This
required us to scan the dirty buffer periodically as well; otherwise, malware files could sneak into
the cloud. Therefore, SeMiNAS performs malware detection before write-back no matter if it is
before or at file close. When a malware database is updated, one typically has to rescan all files
before reading them (part of our future work).

3.4.4 Caching
Because the caching layer needs to manage write-back threads, we implement the caching layer
as an outside library to avoid complicating NFS-Ganesha’s threading model. The caching library
provides caching (lookup, insert, invalidate, etc.) and write-back APIs for NFS-Ganesha. When
inserting dirty blocks of a file using the library, SeMiNAS registers a write-back callback function
along with the dirty buffer. The callbacks are invoked periodically as long as the file remains dirty.
When closing a file, SeMiNAS calls the write-back function directly, and deregisters the callback.

3.4.5 Lines of Code
The implementation took more than 4000 man-hours. Table 3.1 shows the lines of code of our
prototype excluding existing NFS-Ganesha code. In addition, we have fixed bugs and added the
multi-layer stacking feature in NFS-Ganesha; our patches have been merged into the mainstream
NFS-Ganesha. We plan to release all code as open source in the near future.

42



3.5 Evaluation
We now present the evaluation of SeMiNAS under different workloads, security polices, and net-
work settings.

3.5.1 Experimental Setup
Our testbed consists of seven identical Dell PowerEdge R710 machines running CentOS 7.0 with
a 3.14 Linux kernel. Each machine has a six-core Intel Xeon X5650 CPU, 64GB of RAM, a
Broadcom 1GbE NIC, and an Intel 10GbE NIC. Five machines ran as NFS clients, one as a secure
proxy, and one as a cloud NFS server. Clients communicated to the proxy using the 10GbE NIC,
whereas the proxy communicated to the server using the 1GbE NIC. The average RTT between
the clients and the proxy is 0.2ms. The proxy runs our SeMiNAS prototype, and uses an Intel
DC S3700 200GB SSD for the persistent cache. We emptied the cache before each experiment to
observe the system’s behavior when an initial empty cache is gradually filled. We used 4KB as the
block size of SeMiNAS.

To emulate the connection between the proxy and the cloud, we injected 10–30ms delay in the
outbound link of the server using netem; 10ms and 30ms are the average network latencies we
measured from our machines to in-state data centers and the closest Amazon data center, respec-
tively. We patched the server’s kernel with the DIX support [97] (with our bug fixes) that allows
DIF bytes to be passed from user space to kernel.

Physical storage devices that support DIX are still rare, so we had to set up a 10GB DIX-
capable virtual SCSI block device backed by RAM using targetcli [91]. Using RAM, instead
of a disk- or flash-backed loop device, allowed us to emulate the large storage bandwidth provided
by distributed storage systems in the cloud. Although using RAM fails to account for the server-
side storage latency, the effect is minor because the Internet latency (typically 10–100ms) usually
dwarfs the storage latency (typically 1–10ms), especially considering the popularity of cloud in-
memory caching systems such as RAMcloud [94] and Memcached [41]. If storage latency in the
cloud was counted, the extra latency introduced by SeMiNAS’s security features would actually be
smaller relative to the overall latency; hence the results we report here are more conservative. The
DIX-capable device was formatted with ext4, and exported by NFS-Ganesha using FSAL VFS.

We verified that all SeMiNAS’s security features work correctly. To test the correctness of
integrity check, we created files on a client, changed different parts of the files on the cloud server,
and verified that SeMiNAS detected all the changes. To test the correctness of encryption, we
manually confirmed that file data was unreadable ciphertext when reading from the server, but was
plaintext identical to what was written when reading from clients. We also verified that malware
were detected by SeMiNAS when clients attempted to write malware files. Our malware detection
experiments also showed that scanning malware files took about the same amount of time (less than
1% difference) as scanning equal-sized good files. As the absence of malware files had negligible
influence on SeMiNAS’s performance, we used only good files in our following experiments.

We benchmarked seven combinations of the caching and security features as listed in Ta-
ble 3.2. P and C are baselines, and the remaining five correspond to common security policies.
We benchmarked a set of synthetic micro-workloads with pre-configured read-write ratios, and
Filebench [40] macro-workloads including File Server and Web Server. The micro-workloads
help us understand SeMiNAS’s behavior in a controlled environment; the macro-workloads reflect
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Configs
Proxy

Integrity

Encryption

Caching
Anti-v

irus

P 4 8 8 8 8

C 4 8 8 4 8

I 4 4 8 8 8

IE 4 4 4 8 8

IC 4 4 8 4 8

ICE 4 4 4 4 8

ICEA 4 4 4 4 4

Table 3.2: Combinations of security and caching features. The names of the configurations are
combinations of the first letter of enabled features. For example, IC means the configuration when
both Integrity and Caching are enabled.

its performance in popular and realistic scenarios.

3.5.2 Micro-Workloads
We evaluated SeMiNAS using micro-benchmark workloads that help us understand the perfor-
mance impact of SeMiNAS’s features. We pre-allocated 100 files for each of the five NFS clients,
and then repeated the following operations for two minutes: randomly pick one file, open it with
O SYNC, perform n reads and m writes with a fixed I/O size at random offsets, and close it. We
varied n and m to control the read-write ratio, the file size to control the anti-virus overhead, the
I/O size to control the authenticated-encryption overhead, and the network latency between the
proxy and the cloud to control the effectiveness of caching.

3.5.2.1 Security and Caching Features

SeMiNAS’s security and caching features have different performance impact: caching generally
helps performance, whereas integrity, encryption, and anti-virus hurt performance. The combined
performance of these features depends heavily on workload characteristics, especially the read-
write ratio. For example, a read-only workload is not influenced by anti-virus and benefits a lot
from caching. Conversely, a write-heavy workload does not benefit much from caching, and also
incurs frequent anti-virus scanning. We studied read-write ratios (n:m) from write-intensive 1:16
to read-intensive 16:1 to cover common ratios in real workloads [69, 106].

Figure 3.6(a) shows the results of 1:1 read-write ratio. Overall, the configurations with caching
(i.e., C, IC and ICE) outperform their counterparts without caching (i.e., P, I, IE) by 2–3×. Adding
caching to integrity (I→IC) improves throughput by more than 2×. The further addition of en-
cryption does not reduce the throughput because encryption/decryption is relatively fast and read-
ing cached (cleartext) data does not incur decryption at all. Therefore, the performance of ICE is
almost the same as IC. Further, adding anti-virus to ICE has only negligible performance penalty
because scanning a 1MB file is fast compared to the 30ms network latency.

Caching boosts performance even more for workloads with a higher read-write ratio of 16:1,
as shown in Figure 3.6(b). The configurations with caching outperform their counterparts without
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Figure 3.6: Throughput of different combinations of security and caching features with 4KB I/O
size and 30ms network latency

caching by more than 10×. Figure 3.6(b) reinforces the observation that ICE’s performance is
almost the same as IC’s. However, unlike in Figure 3.6(a), adding anti-virus to ICE incurs an
performance penalty of 20% in Figure 3.6(b). This is because the anti-virus layer performs whole
file scanning and the file size is larger (10MB vs. 1MB) in Figure 3.6(b).

However, the performance benefit of caching is only 10–65% with a write-intensive read-write
ratio of 1:16 (Figure 3.6(c)). Caching is less helpful to writes because the dirty data, although
cached, still has to be flushed back to the server when the file is closed. This is required by NFS’s
close-to-open consistency, which guarantees that when a client opens an NFS file, it can observe
the changes made by all clients that have closed the file before. The small improvement of 10–65%
in Figure 3.6(c) comes from caching read operations and coalescing multiple small writes to fewer
larger writes.

3.5.2.2 Integrity Tests

Data integrity ensures that what we read from the cloud is indeed what we stored, and is the
most important security feature of SeMiNAS. Without integrity, encryption only prevents sensitive
data from leaking to public, but does not prevent the sensitive data from corruption or tampering;
without integrity, anti-virus alone does not prevent the cloud from infecting files. Therefore, we
evaluated integrity first, and we always enable integrity in subsequent evaluations of encryption
and anti-virus.

The performance overhead of data integrity depending on whether the cache is enabled or
not, so we studied both cases. Figure 3.7 shows the results without cache, under different read-
write ratios and network latencies. Figure 3.7 shows that with a 30ms network latency and the
write-intensive workloads, where m > n, the I configuration has higher throughput than P, despite
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Figure 3.7: Relative speed of I over P with 4KB I/O size and 1MB file size. 100% (dashed line) is
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the fact that adding integrity to proxy (P→I) incurs extra read operations for file keys. This is
because SeMiNAS is more efficient than NFS-Ganesha’s FSAL PROXY for stable writes to the
cloud. FSAL PROXY uses one WRITE request followed by one COMMIT request to achieve one
stable write operation, whereas SeMiNAS uses only one WRITE PLUS request with the stable flag.
For write-intensive workloads, the benefit of WRITE PLUS is more than the overhead of reading
file keys; the net effect of adding integrity (P→I) therefore boosts performance by up to 16%.
However, as we increase the read-write ratio, the benefit of WRITE PLUS diminishes, and thus the
integrity overhead grows.

The performance overhead of integrity also depends on the network latency between the proxy
and the cloud. In the extreme case of no (zero) latency, adding integrity (P→I) causes the perfor-
mance to drop by more than 90%. This is caused by the expensive RSA decryption to recover the
file key, which dominates in the I/O latency. However, as the network latency grows, the integrity
overhead decreases because the RSA decryption latency no longer dominates. With a more realis-
tic latency of 10–30ms, the throughput of integrity (I) is between 16% higher and 53% lower than
that of proxy (P).

 0

 20

 40

 60

 80

 100

1:16 1:8 1:4 1:2 1:1 2:1 4:1 8:1 16:1

R
el

at
iv

e 
S

p
ee

d
: 

IC
 o

v
er

 C
 (

%
)

Read-to-Write Ratio (n:m)

30ms

20ms

10ms

0ms

Figure 3.8: Relative speed of IC over C with 4KB I/O size and 1MB file size. 100% is the baseline
with only caching (C).

Figure 3.8 shows the integrity performance overhead (C→IC) when the cache is present. The
throughput of IC is always lower than C, unlike in Figure 3.7 where adding integrity sometimes
improves performance due to the elimination of COMMITs by WRITE PLUSs. With a write-back
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cache, C needs only one COMMIT after writing back all dirty data, rather than one COMMIT follow-
ing each write. Thus, using WRITE PLUS requests in IC saves only one COMMIT request regardless
of the number of writes (i.e., m) during a period when a file is open. This also explains the initial
rise of the curves in Figure 3.8: for the n reads and m writes after opening a file, the number of
requests C sends to the cloud is m + 1 (i.e., m WRITEs and one COMMIT, and reads are cached);
saving one COMMIT means saving 1

(m+1)
of the requests. Consequently, asm decreases, the perfor-

mance benefit of WRITE PLUSs increases. In sum, the performance overhead of adding integrity
to caching (C→IC) is between 9–43% with the 10–30ms network latency.

In all micro-workloads, the caching configurations always had higher absolute throughputs
than their non-caching counterparts, regardless of the read-write ratio and the network latency.
Therefore, we only describe configurations with caching in subsequent evaluations.

3.5.2.3 Encryption Tests

In our experiments of adding encryption to integrity (IC→ICE), we did not notice significant per-
formance difference between IC and ICE. The speed of ICE is almost the same as the baseline
IC configuration regardless of the I/O size (4KB–1MB), the read-write ratio (1:16–16:1), and the
network delay (0–30ms). Further adding encryption does not incur significant overhead because
symmetric encryption is fast relative to other SeMiNAS latencies. Other than the long latency
between the proxy and the cloud, the slowest component of SeMiNAS is the RSA asymmetric
decryption for retrieving of file keys, which are needed only once at file open. Adding file data
encryption on top of integrity, however, does not incur extra RSA operations. Therefore, its per-
formance overhead is negligible.

Only the extreme case of no (zero) network delay shows a noticeable difference (4%) under
write-intensive workloads, but not under read-intensive workloads. Both reading from and writing
to the cloud incur extra cryptographic operations. However, with caching, many read operations
are fulfilled from the proxy cache. The caching layer is stacked above the encryption layer and
stores data in cleartext form. Therefore, read operations that are cached do not incur decryption at
all. In sum, adding encryption on top of integrity is almost free in SeMiNAS.
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3.5.2.4 Anti-virus Tests

We present the performance overhead of adding anti-virus on top of caching, integrity, and encryp-
tion (ICE→ICEA). We studied anti-virus’s overhead under different file sizes, read-write ratios
and network latencies because the relative speed of ICEA over ICE depends on all the three fac-
tors. Specifically, we show in Figure 3.10 the results of 100KB, 1MB, and 10MB files under
read-write ratios of 1:16, 1:1, and 16:1, and network latencies of 10ms and 30ms. Compared with
the ICE baseline, ICEA has almost the same throughput for 100KB and 1MB files regardless of
read-write ratios and network latencies. This is because the time to scan small files is negligible in
the presence of longer network latency between the proxy and the cloud.

For 10MB files (rightmost cluster of bins in Figure 3.10), adding anti-virus to ICE incurs a
performance overhead of up to 35% because the scanning time is more substantial. Under 10ms
network latency, the overhead is about the same and around 35% for read-write ratios of 1:1 and
16:1, but negligible for 1:16. Because reads are cached, for a read-write ratio of n:m, ICE’s
throughput is approximately n+m

cL+mL
where c is the constant number of requests for opening and

closing a file, and L is the network latency between the proxy and the cloud. Although writes are
also cached, m write requests are still needed upon write-back if the writes are not overlapping
and thus not coalesced. Adding anti-virus, ICEA’s throughput is n+m

cL+mL+S
where S is the anti-

virus scanning time for one 10MB file. The performance overhead of anti-virus (ICE→ICEA) is
thus S

cL+mL+S
. This explains why the overhead is about the same for the 1:1 and 16:1 ratios as

reads are cached and n is irrelevant. The formula also explains the small overhead of the 1:16
ratio: the denominator becomes much larger than the numerator when m is as large as 16. The
case of 30ms latency is similar: the 1:1 and 16:1 ratios have lower (than the 1:16 ratio) and close
performance overheads. The overheads of the 1:1 and 16:1 ratios are also lower than their 10ms-
latency counterparts because a larger L makes the denominator larger and the end result smaller.

In sum, the overhead of adding anti-virus on top of ICE is negligible for 100K and 1MB
files, and 2–35% for 10MB files. The anti-virus overhead (ICE→ICEA) is lower for more write-
intensive workloads with longer network latencies.
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Figure 3.11: Filebench results with 30ms network latency

3.5.3 Macro-Workloads
We evaluated SeMiNAS using the Filebench File Server and Web Server workloads, which are pop-
ular macro-workloads where integrity, encryption, and anti-virus may be desired. Figure 3.11(a)
shows the results of the File Server workload, which is metadata-intensive and has more writes than
reads. Adding caching to proxy (P→C) causes a 26% performance drop for two reasons: (1) the
proxy cache does not help reads because all reads are fulfilled by clients’ page caches, which are
pre-populated during Filebench’s file pre-allocation stage; and (2) because this workload wraps
each write with a pair of file open and close calls, the write-back cache cannot coalesce writes, and
incurs extra “stable” writes for no benefit. Even when we configured the client’s RAM (1GB) to
be smaller than the working set size (1.28GB), most of reads were stilled cached and the results
were similar. In Figure 3.11(a), adding integrity (C→IC) halves the throughput because of the
overhead of maintaining file headers. Each write in this workload is actually an append and thus
incurs two operations on the file header: one for retrieving the header from the cloud, and another
for updating the file size in the header. However, further adding encryption and anti-virus does not
incur significant performance overhead because the files are relatively small (128KB in average)
in this workload. In sum, adding integrity, encryption, and anti-virus has a performance overhead
of 66% and 54% with respect to P and C, respectively.

Figure 3.11(b) shows the results of the Web Server workload, which is read-intensive. Unlike
the File Server workload, here, adding caching (P→C) improves performance—although only by
14% because most reads are also fulfilled by clients’ page cache. Adding integrity to caching
(C→IC) has an overhead of 5% because of file headers and RSA decryption; and further adding
encryption and anti-virus does not add extra overheads because of small file sizes. In sum, the
throughput of ICEA is 8% higher and 5% lower than P and C, respectively.

3.6 Related Work
As a secure NAS system, SeMiNAS is related to secure distributed storage systems, and storage-
based intrusion detection systems. As a proxy using the cloud as back-end, SeMiNAS is related to
cloud storage gateways and cloud NAS. We discuss each next.
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3.6.1 Secure Distributed Storage Systems
SiRiUS [52] and Plutus [64] provide end-to-end file integrity and confidentiality with minimal trust
on the server; but neither of them is secure against compromised clients. SeMiNAS’ sharing of file
keys (FK) is similar to SiRiUS [52]. However, because access control is enforced by the trusted
proxy, SeMiNAS needs only one key per file instead of two (one for reading and the other for
writing) in SiRiUS. NASD [51] and SNAD [84] add strong security to distributed storage systems
using secure distributed disks. In both NASD’s and SNAD’s threat models, disks are trusted; these
are fundamentally different from threat models in the cloud where storage hosts are physically
inaccessible by clients and thus hard to be trusted.

3.6.2 Storage-Based Intrusion Detection Systems
Avfs [85] is an anti-virus stackable file system that scans file against pattern-based virus signatures.
Avfs also use ClamAV (c. 2004), which has evolved considerably over the last decade and the
original pattern based signatures are less than 1% of the entire database [65]. Most signatures
are now based on hash values of file contents. FileWall [114] combines the idea of firewall with
network file systems, and provides file access control based on both network context (e.g., IP
address) and file system context (e.g., file owner). Molina et al. presented a study of detecting
compromised clients by searching suspicious patterns in their file system activities [86]. All these
studies differ from SeMiNAS because they focus only on clients, and do not consider security
threats from storage servers or the cloud.

3.6.3 Cloud NAS
Panache [74] is a parallel file system cache that enables efficient global file access over a WAN
without the fluctuations and latencies of WANs. It uses pNFS to read data from remote cloud
servers over WANs and caches them locally in a cache cluster. Using NFS, Panache enjoys the
strong consistency of file system API. However, its main focus is high performance with parallel
caching, instead of security. Cloud NAS services are provided by companies such as Amazon [60],
SoftNAS [115] and Zadara Storage [143]. These services focus on providing file system services
in public clouds. As back-ends of SeMiNAS, cloud NAS service providers control and trust the
ultimate storage devices, whereas SeMiNAS cannot control or trust the devices.

3.6.4 Cloud Storage Gateways
Using the cloud as back-end, a cloud gateway gives a SAN or NAS interface to local clients,
and can provide features such as replication, security, and caching. There are several cloud gate-
way technologies, in both industry and academia. In academia, Hybris [33], BlueSky [132], and
Iris [117] are examples of cloud storage gateway systems that provide integrity. Hybris additionally
gives fault tolerance by using multiple cloud providers, whereas BlueSky also provides encryption.
BlueSky and Iris have a file system interface on the client side, and Hybris provides a key-value
store. However, none of them uses a file system API for cloud communication, and thus they
offer only a weaker model—the eventual consistency model that usually uses a RESTful API. In
the storage industry, NetApp SteelStore [89] is a cloud integrated storage for backup. Riverbed
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SteelFusion [104] provides a hyper-converged infrastructure with WAN optimization, data consol-
idation, and cloud back-ends. The exact security mechanisms of SteelStore and SteelFusion are
not publicly known although they claim to support encryption.

3.7 Conclusions
We presented the design, implementation, and evaluation of SeMiNAS, a secure NAS proxy using
the cloud as back-end. SeMiNAS provides end-to-end data integrity and confidentiality using
efficient authenticated encryption, which encrypts data and generates a MAC at the same time.
SeMiNAS stores its cryptographic meta-data efficiently in the Data Integrity Field (DIF) of modern
storage devices without incurring extra network round trips. In addition, SeMiNAS performs on-
access malware detection to prevent malware from spreading across clients. SeMiNAS uses a
persistent cache to alleviate the performance overhead of these security features. We designed and
implemented these features in a layered architecture so that the features can be combined flexibly
according to security policies. We carefully designed the interactions among these layers. We
have evaluated the performance of SeMiNAS under different security policies to study the trade-
off between security and performance. Our evaluation showed that adding integrity has a moderate
overhead of 5–66% depending on workloads; adding confidentiality further comes almost for free;
and adding malware detection is cheap for small files (smaller than 1MB) but moderately expensive
(2–35%) for large files (10MB).

3.7.1 Limitations
SeMiNAS currently does not encrypt file system meta-data, and a malicious cloud may still get
sensitive information from directory and file names. SeMiNAS is also vulnerable to replay attacks,
which usually requires building a Merkle tree [82] for the entire file system and is thus expensive
for cloud environments. Moreover, SeMiNAS uses only one public cloud as the back-end and
assumes the cloud providers can support NFS end-to-end integrity [92], which is not standardized
yet. We propose to resolve all these limitations in Chapter 4.
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Chapter 4

Kurma: Multi-Cloud Secure Middlewares

4.1 Introduction
Kurma is the final design of a cloud middleware system we propose to build. Kurma is based on
SeMiNAS, and they have common design goals such as strong security, high performance, and
flexible trade-off between security and performance. Their threat models are the same: public
clouds are not trusted, clients are semi-trusted, and only the secure proxies are fully trusted. They
also both provide the same security features: integrity, confidentiality, and malware detection.
Both Kurma and SeMiNAS have a middleware architecture where clients access cloud storage
using NFS indirectly via secure cloud proxies. They both have an on-premises persistent cache
that is nearly identical.

Nevertheless, Kurma is better than SeMiNAS in four important aspects: robustness, security,
performance, and feasibility.

First, Kurma is more robust than SeMiNAS by eliminating single points of failure, and thus
enjoys higher availability. Although most public cloud providers have high availability close to
five nines (99.999%) [138], availability and business continuity remain the largest obstacles for
cloud computing [8]. A single cloud provider is itself a single point of failure [8]; once it is out
of service, there is not much tenants can do but wait for it to come up. By using multiple clouds,
Kurma solves this problem. In SeMiNAS, another single point of failure is the proxy server; Kurma
eliminates this by storing meta-data in a highly available distributed service (ZooKeeper), and by
partitioning file data among a cluster of on-premises NFS servers.

Second, Kurma is more secure than SeMiNAS by protecting file system meta-data and detect-
ing replay attacks. SeMiNAS encrypts only file data but not file system meta-data such as file
names and directory tree structure. This makes SeMiNAS susceptible to in-cloud side-channel
attacks that might extract secret information from the meta-data. In contrast, Kurma saves on the
cloud only encrypted data blocks, but not any file system meta-data whatsoever. Moreover, SeM-
iNAS’s vulnerability to replay attacks is fixed by Kurma. Kurma keeps file system meta-data on
premises and replicates the meta-data across the proxies (regions) via secure communication chan-
nels. A part of the replicated meta-data is a per-block version number, which can detect replay
attacks that covertly replace fresh data with overwritten stale data.

Third, Kurma has higher performance than SeMiNAS by relaxing the (unnecessarily strong)
consistency requirement, and optimizing NFS’s compound procedures. We argue in Chapter 3 that
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SeMiNAS’s NFS file system consistency among geo-distributed proxies is feasible and desirable
for many applications. However, the cost of global NFS consistency is high even in the presence
of a persistent cache, as was demonstrated in the evaluation of SeMiNAS (Section 3.5), especially
in the Filebench file-server macro-workload. To achieve the global NFS close-to-open consistency
of NFS, SeMiNAS has to talk to the cloud NFS server synchronously upon each file open and
close operation. This incurs a long latency because of round trips in WANs. Conversely, Kurma
is willing to trade global NFS consistency for high performance. Instead of pursuing global NFS
close-to-open consistency among all geo-distributed proxies, Kurma maintains NFS’s close-to-
open consistency at only the proxy (or regional) level. That is, NFS operations are synchronized
with operations to the same proxy instance (i.e., within one common region), but not with opera-
tions to other instances (i.e., in other regions). This consistency model is the same as provided by
traditional NAS appliances, and thus is enough for legacy applications. Kurma’s geo-distributed
proxies still share a common namespace by asynchronously replicating proxy-level changes to
other proxies. Without overall consistency, however, the asynchronous replication may cause con-
flicts, which Kurma has to resolve automatically or with end users’ intervention.

Kurma further improves performance by supporting large NFS compounds comprising many
operations. This is inspired by our findings in the NFS benchmarking study that NFSv4’s com-
pound procedures are not effectively used (see Section 2.8). Kurma provides a customized library
for clients to initiate large compound requests that are not limited by the POSIX file system API.
Large compound requests can significantly boost performance by enabling more I/O coalescing
and reducing the round trips between clients and Kurma proxies. To simplify error handling in
case of partial failure in a large compound, Kurma also supports an execution of all operations in
a single compound as one transaction.

Fourth, Kurma is more feasible than SeMiNAS with more realistic assumptions of what cloud
providers support. SeMiNAS assumes the cloud NFS server supports NFS’s end-to-end integrity [92],
which simplifies management of security meta-data (see Section 3.3.4.1), but is non-standard part
of the NFSv4.2 protocol proposal. As it stands today, SeMiNAS could not be deployed at a cloud
scale and be objectively evaluated. On the other hand, Kurma uses existing cloud APIs and is thus
more practical.

The rest of this chapter is organized as follows. We first introduce the background of Kurma in
Section 4.2. We present our detailed design of Kurma in Section 4.3. We discuss related work in
Section 4.4. And we propose the implementation and evaluation of Kurma in Chapter 5.

4.2 Background
In addition to NFS-Ganesha introduced in Section 3.4, Kurma also depends on several open-source
distributed systems. These systems are important components of Kurma; understanding these
systems is helpful in understanding Kurma. We discuss them here before we turn to Kurma’s
design.

4.2.1 ZooKeeper: A Distributed Coordination Service
Apache ZooKeeper [59] is a distributed coordination service. ZooKeeper achieves consensus
among distributed systems using an algorithm called ZAB, short for ZooKeeper Atomic Broad-
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cast [63]. ZooKeeper is popular and regarded as “The King of Coordination” [12]. It is also widely
used for leader selection, configuration management, distributed synchronization, and namespace
management. ZooKeeper provides strong consistency and has been used in cloud service as “con-
sistency anchor” [1].

In ZooKeeper, distributed systems coordinate with each other through a shared tree-structured
namespace. Each node in the namespace is called znode, and the path from the tree root to a zn-
ode is called zpath. Each znode can store a small amount (typically less than 1MB) of data, and
have children znodes. ZooKeeper keeps all data (including the namespace metadata and znode
data) in memory to achieve high throughput and low latency. Kurma achieves durability by main-
taining replicas among its servers, and saving transaction logs and snapshots in a persistent store.
ZooKeeper is transactional and has a global ordering of all transactions. Therefore, it guarantees
a consistent view of the tree-structured namespace. ZooKeeper supports a rich set of attributes
for each znode, including a unique ID, ACL, number of children, as well as version numbers and
timestamps for data changes, ACL changes, and children member changes. ZooKeeper allows
clients to register watchers to znodes, and will notify interested clients upon changes on watched
znodes.

ZooKeeper is stable and has been successfully used in many industrial applications [46]. Al-
though ZooKeeper is implemented in Java, it provides both C and Java APIs to clients. ZooKeeper
also has a helper library called Apache Curator [43]. Curator includes a higher level ZooKeeper
API, recipes for common usage of ZooKeeper, a testing framework, and other utilities.

Kurma uses ZooKeeper for three purposes: (1) storing the namespace data (file attributes,
directory structure, and block mapping) of the Kurma file system; (2) coordinating multiple NFS
servers in the same region; and (3) transaction execution of large NFS compounds. Kurma uses
Apache Curator [43] to simplify the programming of ZooKeeper.

4.2.2 Hedwig: A Publish-Subscribe System
Apache Hedwig is an open-source “publish-subscribe system designed to carry large amounts
of data across the Internet in a guaranteed-delivery fashion” [44]. Clients to Hedwig are either
publishers (sending data) or subscribers (receiving data). Hedwig is topic based: a publisher posts
messages to a topic, and Hedwig delivers the messages in the published order to all subscribers
that are interested in that topic.

Hedwig is designed for inter-data-center communication; it consists of geo-distributed regions
spread across the Internet. A message published in one region is delivered to subscribers in all
regions. Hedwig achieves guaranteed delivery by saving messages in a persistent store, replicat-
ing messages in all interested regions, and then sending messages to all subscribers until they
acknowledge the delivery. To achieve high availability, Hedwig uses ZooKeeper for meta-data
management, and uses BookKeeper [42], a highly available replicating log service, for persistent
store. Hedwig supports both synchronous and asynchronous publishing; it also supports message
filters in subscriptions.

Kurma uses Hedwig for distributed state replication to maintain a global namespace. Using
Hedwig, a proxy asynchronously propagates changes to the namespace to other proxies in remote
regions. A per-block version number is a part of the namespace data, and is used for detecting
replay attacks. Hedwig’s filters can be used for advanced access control, for example when a
certain file should not be visible by clients in a region.
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4.2.3 Thrift: A Cross-Language RPC Framework
Apache Thrift is cross-language RPC framework for scalable cross-language services develop-
ment [45]. Thrift allows seamless integration of services built in different languages, including
C, C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, and many others. Thrift includes a
code generator to generate messages (structs or types), RPC stubs (services), and data marshaling
routines; it is similar to Sun’s rpcgen, but not limited to support only the C language. In addition
to a general RPC framework, Thrift also has concrete building blocks of high performance RPC
services, such as scalable multi-threaded servers. Thrift has been used by large companies such as
Facebook, Siemens, and Uber [47].

Kurma uses Thrift for two purposes: (1) defining messages stored in ZooKeeper and replicated
among proxies, and (2) implementing RPC communication between the Kurma services running in
a proxy. For example, the Kurma NFS server talks to Kurma’s file system server using RPC imple-
mented using Thrift. Thrift supports data compression when encoding messages, and considerably
cut the memory footprint of compressible data such as block version numbers. This is particularly
helpful when storing compressible data in ZooKeeper, which keeps all its data in memory.

4.3 Kurma Design
We present the design of Kurma including its threat model, design goals, architecture, consistency
model, caching, file system partition, and security features.

4.3.1 Design Goals
Kurma’s design goals are similar to those of SeMiNAS, except that Kurma strives for higher avail-
ability, stronger security, and better performance. We list Kurma’s five design goals by descending
importance:

• High availability: Kurma should have no single point of failure; it should be available when
a part of proxy machines are down and when one or two public clouds are down.

• Strong security: Kurma should be secure against attacks in its threat model, including ad-
vanced replay attacks. It should ensure integrity and confidentiality to both file data and
meta-data stored in public clouds, and be immune to malware from clients.

• High performance: Kurma should minimize the performance overhead of its security fea-
tures, and should optimize performance for low latency and high throughput.

• Flexibility: Kurma should be configurable in many aspects to support a wide range of secu-
rity policies and performance requirements. Security, consistency, and compatibility can be
traded for performance according to workloads.

• Simplicity: Kurma’s architecture should be as simple as possible to ease development and
maintenance.
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Figure 4.1: Architecture of Kurma. Kurma consists of geo-distributed proxies in regions where
end-users reside. Each region has one single proxy. Although the single proxy may be physi-
cally distributed among multiple machines, Kurma coordinates these machines using ZooKeeper
to ensure they behave as a single logical proxy. All proxies are inter-connected by a trusted com-
munication link; Kurma uses the links to replicating meta-data among proxies.

4.3.2 Architecture
Kurma’s architecture is analogous to SeMiNAS: on-premises proxies (trusted) acts as security
bridges between semi-trusted clients and untrusted public clouds. However, Kurma has three major
architectural differences, as illustrated in Figure 4.1. First, each geographic region has a distributed
proxy instead of a centralized one. A conceptual Kurma proxy consists of a cluster of machines
which are properly coordinated using ZooKeeper. This distributed proxy avoids any single point
of failure and enjoys better scalability and availability.

Second, Kurma proxies in geo-distributed regions are interconnected. In SeMiNAS, proxies
communicate with each other only indirectly through the cloud NFS server. This significantly sim-
plifies the SeMiNAS’s architecture, but sharing secrets through the untrusted public cloud makes
replay attacks difficult to detect. With a trusted direct communication channel between each pair
of proxies, secret file system meta-data can be easily shared, and replay attacks can be efficiently
detected using version numbers of data blocks.

Third, Kurma uses multiple public clouds, instead of a single one, as back-ends. Kurma uses
clouds as block stores other than file servers. For a data block, Kurma stores in each cloud either
a replica, or a part of the erasure coding results of the block. In case of cloud outage, Kurma can
continue its service by accessing other clouds that are still available; in case of data corruption in
cloud, Kurma can restore the data from other replicas or other erasure coding parts.

Kurma stored data in clouds and meta-data in on-premises ZooKeeper. Kurma replicate data
among multiple clouds using simple replication or erasure code; Kurma replicates meta-data across
proxies asynchronously. Note that each Kurma proxy runs one instance of ZooKeeper, and Kurma
uses Hedwig to replicate meta-data in geo-distributed ZooKeeper instances by replaying changes
made by each proxy.
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Each Kurma proxy deploys three services on its cluster of machines: an NFS service facing
clients (NFS service), a persistent file cache service (PCache service), and a Kurma file system
service (FS service) communicating to public clouds and other proxies. Kurma also deploys three
services it depends on: ZooKeeper, BookKeeper, and Hedwig. These services are loosely coupled
and use RPC or network sockets for mutual communication. Therefore, they can be deployed in
different machines, and enjoy the flexibility of adjusting the number of specific servers according
to load.

The relationships among Kurma’s NFS service, PCache service, FS service, their supporting
services, and the remaining components of the proxy are illustrated in Figure 4.2. A Kurma NFS
server processes NFS requests initiated by clients. A Kurma proxy may contain multiple NFS
servers each serving a part of the overall namespace. When an NFS server encounters an operation
to a file system object that should be handled by a different NFS server, it can redirect the client
to the correct server using NFSv4’s referral method [111]. The distribution of file system objects
among NFS servers is determined by the Kurma file system and saved in ZooKeeper.

Kurma’s NFS servers run NFS-Ganesha (introduced in Section 3.4.1) with two FSAL layers
in the NFS server: FSAL PCACHE and FSAL KURMA. FSAL PCACHE talks to the persistent write-
back cache service (PCache), which is the same as SeMiNAS’s cache (see Section 3.3.6) but differ
only in the way of write-back. In SeMiNAS, write-back to cloud happens synchronously upon
file close to achieve close-to-open consistency; Kurma does not guarantee overall consistency and
write-back happens asynchronously. When necessary, FSAL PCACHE also scans dirty data for
viruses before inserting it into the cache.

The lower FSAL layer is FSAL KURMA, which talks to the Kurma file system (FS) service.
Kurma FS stores file system meta-data in ZooKeeper and data blocks on public clouds. To maintain
a global namespace, Kurma FS publishes local file system changes to, and receives remote changes
from remote proxies using Hedwig. When the message of a remote change is received, Kurma FS
tries to replay the change locally. Lacking global synchronization, the replay may fail due to
conflicts, and Kurma FS will then resolve file system conflicts using a traditional solution [102].
Before writing block data to the clouds, Kurma FS also performs authentication and encryption, as
well as optional erasure coding if configured to do so.

4.3.3 Meta-Data Management
Kurma’s file system service (Kurma FS) maintains hierarchical namespaces by storing file system
meta-data in ZooKeeper. A Kurma file system instance is called a volume and is identified by a
volume ID (VID). VID is a variable-length opaque binary that is unique among all proxies. Each
volume can choose its backing clouds (e.g., Amazon S3 and Google Cloud Storage), replication
or erasure coding settings with a configuration file. For each back-end cloud, all data blocks of
a volume are stored as key-value objects in one container identified by the SHA256 value of the
volume ID.

Within a volume, each file system object (file, directory, symbolic link, etc.) is identified by
a tuple of 〈OID, OCREATOR, OTYPE, OFLAGS〉, where OID is a 128-bit integer of object ID,
OCREATOR is a 8-bit-long ID of the proxy that creates the object, OTYPE is a 8-bit value of the
object type (e.g., file or directory), and OFLAGS is a 8-bit value of flags (e.g., a flag indicating a
private file not shared to other proxies). Kurma uses 128-bit OIDs to ensure OIDs are never reused
and always stay unique: assuming there are one million machines, each of which can create a file

57



Clients

Secure

Middleware

Azure
S3

Drive

Public

Clouds

Other

Middlewares

Figure 4.2: Components of a Kurma Proxy. The arrows indicate interaction among the compo-
nents. A proxy comprises of three services: NFS, PCache, and Kurma FS. The NFS server runs
NFS-Ganesha and exports cached and cloud-backed files to clients. The PCache service manages
the persistent write-back cache. Kurma FS serves as the NFS server’s secure proxy to the cloud
back-end, and maintains a global namespace by replicating meta-data across all proxies. Kurma
FS depends ZooKeeper, BookKeeper, and Hedwig for meta-data storage, distributed coordination,
and meta-data replication.

system object in one nanosecond, it will take more than 1016 years to use up the 128-bit ID. Kurma
stores the largest used OID as a 128-bit integer in ZooKeeper. Allocating OIDs is a ZooKeeper
transaction that atomically reads and increments the integer. To avoid frequent allocations, each
transaction allocates a configurable number (100 by default) of OIDs at a time. Since each proxy
allocates its own OIDs, the OCREATOR is needed to differentiate among proxies. The concate-
nated hex representation of VID, OID, and OCREATOR forms the zpath (ZooKeeper path, see
Section 4.2.1) to the znode (ZooKeeper node) that stores the meta-data of the file system object.

For a directory, its meta-data content is similar to normal file systems, and comprises attributes
and 〈name, OID〉 pairs of its children objects. For a regular file, its meta-data includes traditional
attributes as well as a list of 〈MID, EFK〉 pairs, where MID is the ID of a proxy, and EFK is the
file key (FK) encrypted by the public key of the proxy. The list of 〈MID, EFK〉 pair is used for
exchanging FK among proxies as discussed in Section 3.3.4.2.

Another important part of a file’s meta-data is about block mapping that identified the data
blocks in the file’s address space. In Kurma, a data block is 64KB by default, and is identified by
a tuple of 〈OFFSET, VERSION, MODIFIER〉, where OFFSET is the block offset, VERSION is
the block version number, and MODIFIER is the MID of the proxy performed the latest change
on the block. Each data block is stored as a key-value 〈BK, BV〉 object on clouds. The block key
(BK) is the SHA256 value of the concatenation of VID (volume ID), OID (object ID of the file),
OFFSET, VERSION, and MODIFIER; the block value (BV) is the concatenation of MAC, and
auth-encrypted block data and security meta-data (including the version number, the offset, and a
timestamp). When stored in ZooKeeper, the block mappings are simply an array of VERSION,
and an array of MODIFIER both indexed by the offset. The two arrays, if not inlined in case
of small files, are stored in children znodes of the file’s znode. To reduce the memory footprint
of the all-in-memory ZooKeeper, Kurma compresses the arrays before storing them there. We
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expect the array of version numbers to be highly compressible because it usually contains only
small numbers (reflecting small number of changes) and many consecutive runs of equal numbers
(reflecting locality of changes). The block mapping arrays may be split and stored in multiple
znodes due to the 1MB capacity limit of a znode.

4.3.4 Security
Kurma provides integrity, confidentiality, and malware detection as SeMiNAS does. Kurma’s
malware detection is as described in Section 3.3.5, and Kurma also use authenticated-encryption to
provide encryption and authentication together. However, Kurma is more secure with the following
two differences: (1) Kurma detects replay attacks, and (2) Kurma protects not only file data but
also file meta-data including file names, file system tree structure, and file access patterns.

To detect replay attacks, Kurma saves a per-block version number in its meta-data, which is
replicated among all proxies. When reading a block (a key-value 〈BK, BV〉 object) from pub-
lic clouds, Kurma generates BK using its VID (volume ID), file OID, OFFSET, VERSION, and
MODIFIER as inputs to SHA256. Therefore, each version of the block has a unique BK. Without
knowing VID, OID, the offset, or the version number, malicious clouds could not tell if two 〈BK,
BV〉 objects are two different versions of the same block. Moreover, each block value (BV) also
contains additional security meta-data including the version number, the offset, and a timestamp.
Even if malicious clouds obtained the OID and VID somehow, they cannot replay BV with an old
version, which should contains the wrong block version number or offset. Therefore, malicious
clouds are unable to carry out replay attacks without being caught.

Because Kurma stores the meta-data of the file system in on-premises ZooKeeper, the names-
pace information is unknown to clouds. This prevents malicious clouds from guessing sensitive
information out of directory and file names. This also stops side-channel attacks that extract sen-
sitive information by correlating operations on related file system objects. Kurma protects the
per-file key (FK) with the public keys of proxies using the approach described in Section 3.3.4.2.
Kurma stores the encrypted FKs (EFKs) of a file as part of its meta-data in ZooKeeper and shares
them among proxies using Hedwig.

4.3.5 Consistency Model
Kurma relaxes the global NFS close-to-open consistency guarantee of SeMiNAS by using RESTful
APIs instead of NFS when talking to public clouds. This relaxation allows file meta-data operations
being processed within the on-premises network. When file data is also cached in the proxy’s on-
premises persistent cache, operations can be processed without talking to public clouds at all. This
cuts round trips in the WANs and significantly lowers operation latency. In other words, Kurma
trades unnecessarily strong consistency for higher performance.

This degree of trade-off is acceptable because the relaxed consistency is still the same as pro-
vided by traditional NAS appliances. That is, clients in a region have a consistent view of the file
system. For NFS, the consistent view means close-to-open consistency [71], which guarantees a
client sees all changes to a file that are made before the moment when the client opens the file. In
Kurma’s consistency model, a client in a region will see all previous changes to the file that are
made by other clients in the same region, but not necessarily the changes made by clients in other
regions. However, the client will see remote changes as soon as the changes propagate to the local
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region through Hedwig. Therefore, stale data is only observable in the small time window after
remote changes and before the propagation. Since concurrent file updates are rare [69], conflicts
should be rare as well.

The eventual consistency of cloud storage means what the value of a key we read from clouds
may not be the latest value, but an old value. Kurma uses two mechanisms to prevent reading stale
value. First, each version of every data block has an unique key that is generated by SHA256 using
the block version as one of the inputs. Kurma does not update any value in the clouds; instead, it
creates a new key-value pair when modifying the data of a block. Therefore, a key has only one
read-only value and thus does not have stale value. Second, the value of each block also contains
the version number of the block. Before storing block value on clouds, Kurma also authenticates
the version number using the cryptographic key of the parent file. When reading the block value,
Kurma can thus verify whether the version number is authentic, and whether this version number
retrieved from clouds matches the version number of the block Kurma intends to read.

The close-to-open consistency requires every client to (1) write back all dirty data of a file
before it closes the file, and (2) revalidate its local cache of the file before it opens the file. However,
these two requirements are no longer applicable to Kurma’s persistent cache for two reasons. First,
a file is served only by one Kurma NFS server and one PCache server thanks to the coordination of
ZooKeeper, and there is no inconsistency issue with only one copy of data in one region. Second,
Kurma provides only region-level consistency, and inconsistency in copies from multiple regions
does not compromise its regional consistency guarantee.

Although not required, PCache also revalidates its cache upon file open by consulting Kurma
FS, in order to limit the time window of cross-region inconsistency. If Kurma FS has received
changes by remote proxies to the file, PCache will know. Then, depending on whether the cache
is dirty or not, PCache will invalidate its cache or immediately write dirty data back to Kurma FS.
There might be conflicts during the write-back, which Kurma FS has to resolve.

4.3.6 Partition over Multiple NFS Servers
To make Kurma proxies robust, Kurma partitioned file system objects (files and directories) of
Kurma volumes across multiple NFS servers. Each Kurma proxy maintains a list of the NFS
servers running in that proxy, and designates a primary NFS server for each file system object.
Each file system object has only one primary NFS server at a time, and the primary NFS server
processes all operations to that object. Kurma prefers the least loaded running NFS server when
making designation decision. The list of running NFS servers and the designation records of
primary NFS servers are stored in ZooKeeper.

To simplify the designation of primary NFS server, Kurma does that only for directories whose
directory depths are lower than a configurable level (3 by default). For a file system object without
a directly designated NFS server, it inherits the primary NFS server from the lowest ancestor in the
directory tree.

When the primary NFS server of a file system object is down, Kurma designates a still-running
NFS server as the new primary. We propose to achieve the fail over between NFS servers by
setting all NFS servers as an NFS cluster [96]. When the failed NFS server recovers, it will read
designation information from ZooKeeper, and know it is no longer the primary NFS server for file
system objects designated before the outage. When the recovered NFS server still receives requests
on the old file system objects, it will redirect those request to their new primary NFS servers.
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Each Kurma proxy stores file system meta-data in one single instance of ZooKeeper, and uses
ZooKeeper to coordinate multiple NFS servers. Therefore, NFS requests operating on two file sys-
tem objects in two NFS servers, such as RENAME, is not a problem because the single ZooKeeper
will process changes of the meta-data backing both NFS servers.

4.3.7 Multiple Clouds
The availability of most cloud providers is much higher than the availability of private computing
infrastructure [138]. However, cloud outage did happen, and can be quite bad sometimes [127].
Researchers from University of California at Berkeley considered availability as the top one ob-
stacle to growth of cloud computing, and they pointed out the solution is to use multiple cloud
providers [8]. By saving data redundantly on multiple clouds, Kurma can achieve high availability
and ensure business continuity in the presence of cloud failures (corruption and outage). Suppose
failures of clouds are independent and the failure rate of each cloud is λ, then the availability of
using two clouds would be 1−λ2. Therefore, Kurma can achieve six-nine availability (99.9999%)
when using two clouds, each of which has an availability of 99.9%.

Depending on the configuration, Kurma uses either replication or erasure coding to store data
redundantly on multiple clouds. These two methods represent different trade-offs among storage
and computation overhead.

To tolerate the failure of f clouds using replication, we need to replicate over f + 1 clouds. A
write operation (i.e., PUT) finishes only when we have put a replica in each of the f + 1 clouds,
whereas a read operation (i.e., GET) finishes as soon as one valid replica is read. The storage
overhead and write amplification are both (f +1)×. The read amplification is zero in the best case
(no failure), but (f +1)× in the worst case (f failures). Replication requires no extra computation.

An erasure code transforms a message of k > 1 symbols into a longer message with k + m
symbols, and it can recover the original message with any k symbols of the longer message. Put
differently, the erasure code can tolerate m failures. Therefore, to tolerate the failure of f clouds
using erasure coding, Kurma write to k+f clouds and read from at least k clouds. In the best case,
a read operations has to read from k clouds but each read size is 1

k
of the original block size; in the

worst case, it has to read from k+f clouds. The storage overhead and write amplification are both
f+k
k
×. Unlike replication, erasure coding requires extra computation.
In sum, replication uses more extra space, but reads from fewer clouds, and does not cost any

computation; conversely, erasure coding uses less extra space, but reads from more clouds, and
costs extra computation. Kurma leaves the choice to end user by supporting both, and uses the
method as specified in its configuration file.

4.3.8 NFS Transactional Compounds
In addition to trading consistency for performance, Kurma optimizes performance further by taking
full advantage of NFSv4’s compound procedures, which we found to be woefully under-utilized
(see Section 2.6.1). The key reason of the under-utilization is the synchronous and low-level nature
of the POSIX file system API. To overcome this limitation, we propose a customized client library
of high-level file system functions. For example, a function that opens, reads, and closes a file all
at once will be efficient and convenient for manipulating small files. Another example is a function
that copies one or more files without moving data back and forth between the client and the server.
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Figure 4.3: Sequence Diagram of File Creation. The sequences of other operations follow a similar
direction of moving from client to FSAL PCACHE, FSAL KURMA, Kurma FS, and then gradually
return back to the client.

This library will allow applications to initiate large NFS compounds with many operations. Large
NFS compounds can considerably cut round trips between client and server, and enable larger
degree of parallelism and I/O coalescing on the server side.

Another obstacle to large NFS compounds is the difficulty of error handling in case of failures.
Because failed operations may leave the file system in an inconsistent state, it is crucial to properly
handle them. With many operations in a large compound, failures can happen in many different
scenarios. Distinguishing and fixing each scenario is inconvenient and error-prone. Kurma’s solu-
tion to this problem is transactional executions of large compounds. When an application choose
transactional execution of a compound, Kurma will ensure the compound be processed atomically:
either all operations succeed, or none of the them takes place. The application will also benefit
from other transaction properties, such as consistency and durability.

Because Kurma FS uses ZooKeeper as meta-data store, Kurma can leverage ZooKeeper’s trans-
action support to implement transactional NFS compounds.

4.3.9 Kurma Operation Examples
To further clarify the design of Kurma, we work through the steps Kurma takes to process typical
file system operations.

4.3.9.1 Create a New File

The sequence diagram of file creation is illustrated in Figure 4.3. When a Kurma client initiates
a file creation, the client sends an NFS OPEN request with the OPEN4 CREATE flag (similar to
O CREATE) to the Kurma NFS server backing the mounted NFS volume. The Kurma NFS server,
running NFS-Ganesha, decodes the OPEN request and passes it to the FSAL layers. The upper
FSAL PCACHE layer immediately redirects the request down to the lower FSAL KURMA layer.
Then, FSAL KURMA sends an OPEN RPC request with proper flags to a Kurma FS server; and
will simply return results back to the upper FSAL PCACHE layer once the RPC reply is received.
The Kurma FS server, upon receiving the RPC request, performs the following four tasks in order:
(1) allocates a new object ID (OID); (2) atomically creates a znode of the new file and update the
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znode of its parent directory in ZooKeeper; (3) asynchronously publishes a message about this
file creation to other proxies; and (4) replies the RPC request with file creation results and the
file’s attributes back to FSAL KURMA. When the control goes back to FSAL PCACHE, it caches the
file attributes from the RPC reply if the creation succeeded, and returns control to NFS-Ganesha.
Finally, NFS-Ganesha sends an NFS reply to the original NFS OPEN request.

4.3.9.2 Open an Existing File

Opening an existing file goes through the same steps as creating a file, but differs in two aspects.
First, the OPEN4 CREAT flag is not set when opening an existing file. Second, FSAL PCACHE

revalidates (and invalidates if necessary) its cache using the latest file attributes it receives from
FSAL KURMA. The cache revalidation happens in the same manner as the NFS client revalidates
its own client-side cache [21]. That is, FSAL PCACHE compares current remote-modify-time (i.e.,
the timestamp of the last remote modify) with the remote-modify-time saved previously when the
cache is created. If the two times are the same, this means the file has not been modified by other
proxies and the cache is still valid; if the times differ, then FSAL PCACHE invalidates its cache of
the file.

4.3.9.3 Write to a File

Writing a file is simple. A write operation reaches only FSAL PCACHE, and then returns back to
NFS-Ganesha without talking to the underlying FSAL KURMA. This is true even when the write
request is stable (i.e., requesting dirty data be flushed by setting DATA SYNC4 or FILE SYNC4 flag).
A stable write incurs only an additional flush to the persistent cache. To improve performance,
writing back to the clouds is deferred after file close.

4.3.9.4 Read From a File

When a READ NFS request reaches the FSAL PCACHE layer of a Kurma NFS server, FSAL PCACHE

first tries to serve the requested data from its cache. Upon a cache miss, FSAL PCACHE then loads
the data (rounded up and aligned to the to enclosed blocks) from the lower FSAL KURMA layer,
which sends a READ RPC to a Kurma server. The Kurma server retrieves the corresponding data
blocks from the clouds, authenticates and decrypts them, and sends the data to FSAL KURMA and
then to FSAL PCACHE. FSAL PCACHE serves the pending NFS read request and insert the data
into the persistent cache. When inserting data fetched from the clouds into cache, FSAL PCACHE

should take care to avoid overwriting any overlapping dirty cache data.

4.3.9.5 Close a File

A CLOSE NFS request triggers the FSAL PCACHE layer to write dirty data back to public clouds,
and optionally to scan for viruses. FSAL PCACHE first flushes dirty data and meta-data to the
local storage of the persistent cache, then registers asynchronous write-back of dirty data, and
finally it returns. There are dedicated threads to handle asynchronous write-backs. These threads
form a consumer-producer relationship with FSAL PCACHE. The write-back threads perform read-
modify-update first in case of unaligned writes, and then write back dirty data asynchronously by
sending WRITE RPCs to Kurma FS servers. After that, Kurma FS servers authenticate and encrypt
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the data blocks, writes the blocks to the clouds (after erasure coding if necessary), increments
the version numbers of the blocks, and publishes a message about the change to remote proxies
through Hedwig.

4.4 Related Work
Kurma is inspired by many previous studies in related areas, and we have already studied some of
those in the discussion of SeMiNAS (Section 3.6). Here, we focus on studies that are related to
Kurma features not available in SeMiNAS. Specifically, we compare Kurma to other file and stor-
age systems that (1) use multiple clouds (i.e., a cloud-of-clouds) as storage back-end, (2) guarantee
data or meta-data freshness in the face of replay attacks, and (3) support compound operations.

4.4.1 A Cloud-of-Clouds
Using multiple cloud providers is an effective way to ensure high availability and business conti-
nuity in case of cloud failures [8]. There are several studies of multi-cloud systems [1,2,15,33,58],
and all of them store data redundantly on different clouds using either replication or erasure coding.

In addition to higher availability, multiple clouds can also be used to enhance security. Because
compromises or collusion across multiple cloud providers is less likely, dispersing secrets among
them is more secure than storing all of them on a single cloud [5]. For example, DepSky [15] and
SCFS [1] ensure security by secretly storing keys on multiple clouds and preventing any single
cloud alone from accessing the keys.

However, most of these multi-clouds storage systems [2, 15, 33, 58], including Hybris [33],
provide only key-value stores, instead of file systems as Kurma does. Hybris is also a middleware
system, but it resides in a single geographic location and does not support geo-distributed proxies.
SCFS provides a POSIX-like file system, but it is for personal users instead of enterprises. SCFS
favors the scenario when all of a client’s files can fit in the client’s local storage. SCFS is not a
cloud middleware, and needs a trusted in-cloud meta-data service as a consistency anchor.

4.4.2 Freshness Guarantees
Not many cryptographic file systems guarantee data or meta-data freshness [117] because replay
attacks are difficult to handle. SiRiUS [52] ensures partial meta-data freshness but not data fresh-
ness. SUNDR [72], SPORC [38], and Depot [75] all guarantee fork consistency that can detect
freshness violations with out-of-band inter-client communication.

Among the few file systems that guarantee freshness of both data and meta-data, most of
them [34, 48, 117] use Merkle trees [82] or its variants to detect replay attacks. Iris [117] uses
a balanced Merkle-tree that supports parallel updates from multiple clients. Athos [53] does not
use Merkle trees, and guarantees freshness after replacing the hierarchical structure of the directory
tree with an equivalent but different structure based on skip lists. SCFS [1] also provides freshness
without using Merkle trees, but it does so by relying on a trusted and centralized meta-data service
running on cloud.

Other cloud systems provide data freshness guarantees for key-value stores, instead of file
system services. CloudProof [98] provides a mechanism for clients to verify freshness; Venus [112]
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and Hybris [33] guarantee freshness by providing strong global consistency out of the eventual
consistency model of cloud key-value stores.

Kurma’s approach to freshness guarantees is significantly different from all aforementioned
systems. Kurma is free from the performance overhead of Merkle trees, and instead uses a reliable
publish-subscribe service (Hedwig) to replicate meta-data and block version numbers among geo-
distributed cloud proxies. Unlike SCFS [1], Kurma does not rely on any trusted third party for
meta-data management or key distribution.

4.4.3 Compound Operations
Improving performance by coalescing and compounding operations is a common technique widely
used in storage and networking subsystems. The idea has been exemplified by disk I/O sched-
ulers [121] and Nagle’s TCP algorithm [134]. These traditional coalescing and compounding
techniques are agnostic to file system and networking APIs (i.e., system calls), and happen under
the hood inside the kernel.

However, as storage devices and networks grow increasingly faster, these implicit compound-
ing techniques become inadequate. Pursuing the best system performance, researchers started to
propose explicit compounding or vector-based APIs for high speed system calls [99], storage de-
vices [128, 129], and networks [61]. It is demonstrated in their studies that explicit compounding
can greatly improve performance. As a network-based storage protocol, NFS compounding holds
a promising potential if supplied with an explicit compounding API. In addition, Kurma’s transac-
tional execution of compounds will make NFS not only faster but also much more convenient to
use.
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Chapter 5

Proposed Work

Our work can be improved and extended in many aspects. In this chapter, we discuss further
work that we propose to accomplish in this thesis. We will discuss future work beyond this thesis
in Chapter 6. The proposed work covers three aspects: (1) the implementation and thorough
evaluation of the current design of Kurma; (2) the development of new Kurma features including
private namespace and snapshotting; and (3) the performance optimization using NFS transactional
compounds with many operations.

5.1 Kurma Implementation and Evaluation
Currently, we have finished all details of Kurma’s design (except transactional compounds) dis-
cussed in Chapter 4, such as the format of Kurma FS’s meta-data stored in ZooKeeper, the RPC
protocol between FSAL KURMA and Kurma FS, the format of messages exchanged cross proxies
using Hedwig, the RESTful cloud storage clients to several popular cloud providers, etc. As to
the implementation, we have also finished FSAL PCACHE, FSAL KURMA, and Kurma FS; and we
propose to complete the following implementation tasks that are not finished yet:

1. meta-data replication among proxies and the associated conflicts resolution;

2. partition of file system objects among multiple NFS servers of a proxy;

3. support of erasure coding across multiple public clouds. and

4. error handling upon detection of replay attacks and cloud outage;

Evaluation of Kurma is crucial to judge whether Kurma has achieved the design goals we set.
We propose to evaluate Kurma with the following correctness and performance tests:

1. xfstests to ensure Kurma has correctly implemented the NFS semantics;

2. security tests to make sure Kurma withstands all attacks it defends against;

3. global namespace tests to ensure Kurma provides a global namespace to all proxies and
handles conflicts properly;
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4. micro-benchmarking that either checks our design assumptions (e.g., the compressibility of
the array of version numbers discussed in Section 4.3.3), or guides our optimizations (e.g.,
the prioritizing of public clouds based on their performance); and

5. performance tests to evaluate Kurma’s competitiveness to other comparable systems.

5.2 Development of New Kurma Features
We also propose to develop two new Kurma features we think are interesting:

1. Private Namespaces. The capability to share files among geo-distributed regions is desirable,
but it is not always needed. In fact, file sharing is infrequent and rarely concurrent in realistic
workloads [69]. This makes private namespaces, files within which are not shared across
proxies, meaningful. We propose to design and implement private namespaces in Kurma,
and evaluate its performance benefits compared to normal namespaces.

2. Snapshotting. Snapshotting is highly desirable nowadays due to the popularity of virtual-
ization, and NFS is frequently used to host VM disk images [124]. This makes snapshot-
ting an appealing feature to have in Kurma, and we propose to develop it in this thesis as
well. Adding snapshotting should not be difficult considering that Kurma already maintains
a version number of each data block, and ZooKeeper, the meta-data store, also supports
versioning.

5.3 NFS Transactional Compounds
NFS transactional compounds comprising many operations, discussed in Section 4.3.8, is a major
performance optimization we also propose to develop in this thesis. We have begun to investigate
this work, but the following remains to be finished:

1. The design and implementation of a high-level NFS client library that allows applications to
initiate NFS compounds with large number of operations.

2. The support of transactional execution in Kurma’s NFS and FS servers under the help of
ZooKeeper.

3. The evaluation of the performance boost of large NFS compounds with and without transac-
tional execution.
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Chapter 6

Conclusions

Because of its advantages in availability, cost efficiency, flexibility, and scalability, cloud comput-
ing becomes more and more popular. However, to realize the dream of computing as a utility, cloud
computing still faces many obstacles, with the top three being availability (ironically), vendor lock-
in, and data confidentiality [8]. In this thesis, we proposed Kurma, a cloud middleware system, to
address the storage aspect of these obstacles: Kurma uses multiple cloud providers for high avail-
ability, uses standard NFS protocol to alleviate vendor lock-in and improve application portability,
and deploys encryption and authentication to provide data confidentiality and integrity. Kurma acts
as a proxy that provides legacy NAS-based clients with seamless, fast, secure, and highly available
cloud storage service without requiring any changes to either clients or cloud providers.

Many NAS-based applications demand high performance (especially low latency), which can
be difficult to achieve in clouds due to long physical distances and high network latency. To pro-
vide high performance in Kurma, we started from analyzing the performance of different versions
of NFS (NFSv3 and NFSv4.1), the storage protocol between clients and Kurma proxies. We con-
ducted a comprehensive and in-depth benchmarking study using a wide range of workloads in
different network settings. We fixed a severe performance problem of NFSv4.1 and improved its
performance by up to 11×. We found that NFSv4.1 has comparable performance to NFSv3, and
holds the potential of much better performance than NFSv3 when its advanced features, such as
delegations, are effective. We also identified NFSv4.1’s compound procedures, which are currently
under-utilized, as an opportunity to significantly boost NFSv4.1’s performance.

Then, as a first step to develop Kurma, we designed, implemented, and evaluated a simplified
prototype called SeMiNAS, which uses only a single cloud as back-end and is susceptible to re-
play attacks. SeMiNAS is a secure cloud proxy that provides data integrity, confidentiality, and
malware detection. It enjoys flexible trade-off between security and performance by allowing each
security feature to be enabled and configured separately. To improve performance, SeMiNAS uses
a persistent cache to serve most I/O requests in the faster on-premises network. SeMiNAS embeds
security meta-data into file data using a novel method that does not incur extra round trips between
the proxy and the cloud. However, the novel meta-data management assumes the cloud provider
supports an NFS extension [92] that is not standardized yet.

Based on the experience with SeMiNAS, we presented the design of Kurma, which is more
robust, secure, and efficient. Kurma does not have single points of failure: it uses multiple public
clouds as back-end, and is built on top of fault-tolerant distributed services such as ZooKeeper
and Hedwig. Kurma protects the integrity and confidentiality of not only file data but also meta-
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data such as file names and directory structures. Kurma has an efficient solution to replay attacks:
it maintains a version number for each data block, and replicates the version numbers across all
geo-distributed proxies. Kurma is also faster and more realistic than SeMiNAS by trading off
cross-region consistency for performance and using only existing RESTful cloud APIs.

Finally, we proposed the implementation and evaluation of Kurma, as well as two directions
of improvement. One is to add new Kurma FS features including private namespaces and snap-
shotting; the other is to optimize performance further with large and optionally transactional NFS
compounds with many file system operations.

We hope Kurma exemplifies an inspiring exploration of, and an elegant solution to the unique
problem of simultaneously achieving high availability, security, and performance in hybrid cloud
systems that combine traditional on-premises storage and public cloud storage. We also plan to
open source Kurma in the hope to benefit both research and engineering communities.

6.1 Future Work
This work can be extended further beyond the scope of the thesis. We see at least four interesting
and closely related future directions:

1. More features in Kurma FS. Kurma FS is a good platform for adding more file system fea-
tures such as compression, deduplication, online file system checking, and pNFS support.

2. Optional strong global consistency. Kurma trades off strong global consistency for better
performance; however, it may still be desirable to have optional global consistency for cer-
tain files. One plausible way is to use file mastership. By designating a master proxy of a
file (e.g., the creator proxy), global consistency can be achieved by synchronizing changes
to the file in all proxies with the master.

3. Cost awareness and optimization. Cloud operations have different cost and performance.
For example, read data is more expensive than writing [1], and one cloud provider may be
slower but cheaper than another. Lowering Kurma’s cost under a reasonable performance is
an interesting topic worth exploring.

4. Transactional NFS compounds API in general languages. We proposed a customized client
file system library to initiate large NFS. However, it would be more convenient and elegant
to support that in general programming languages. Some modern languages, such as the
proposed C++17 [83], are showing potential to do that. The following listings is an example
that may initiate an compound comprising three file operations (i.e., open, read, and close).

namespace f s = s t d : : e x p e r i m e n t a l : : f i l e s y s t e m ;

auto a s y n c o p e n = [ ] ( name , f l a g s ) { re turn s t d : : a sync ( f s : open , name , f l a g s ) ; } ;
auto a s y n c r e a d = [ ] ( fd , buf , l e n ) { re turn s t d : : a sync ( f s : read , fd , buf , l e n ) ; } ;
auto a s y n c c l o s e = [ ] ( fd ) { re turn s t d : : a sync ( f s : c l o s e , fd ) ; }

a s y n c o p e n ( ” foo ” , O RDONLY)
. n e x t ( a s y n c r e a d , buf , l e n ) . unwrap ( )

. n e x t ( a s y n c c l o s e ) . unwrap ( ) . g e t ( ) ;
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