
Storage Virtualization with a Stackable File System

A Thesis Presented

by

Sunil Satnur
to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science
in

Computer Science

Stony Brook University

Technical Report FSL-05-03
December 2005



i



Stony Brook University

The Graduate School

Sunil Satnur

We, the thesis committee for the above candidate for the

Master in Science degree,

hereby recommend acceptance of this thesis.

Dr. Erez Zadok, Thesis Advisor

Computer Science

Dr. Tzi-cker Chiueh, Chairperson of Defense

Computer Science

Dr. Alexander E. Mohr

Computer Science

This thesis is accepted by the Graduate School

Dean of the Graduate School

ii



Abstract

Different files have different importance, sizes, and access patterns. Standard file systems allow

only per-mount-point customizations of the underlying storage. This means that: (1) storage

resources are wasted, (2) data reliability and performance are suboptimal, and (3) files are not

stored conveniently for the users. Therefore, individual files require different ways of storing

them.

We have designed a stackable file system called Redundant Array of Independent File systems

(RAIF). It allows users to store individual files with greater flexibility than is available with tra-

ditional disk-level RAID systems. RAIF can be mounted on top of any combination of other file

systems (called branches) including network, distributed, disk-based, and memory-based file sys-

tems. RAIF uses a pool of lower file systems to place individual files on all or a subset of the lower

file systems. RAIF combines the data survivability properties and performance benefits of tradi-

tional RAIDs with the greatly increased flexibility of composition, improved security potential,

and ease of development of stackable file systems. Existing encryption, compression, anti-virus,

versioning, tracing, consistency checking, and other stackable file systems can be mounted above

and below RAIF, to allow many more configurations of storage. Individual files can be distributed

or striped across branches, replicated, stored with parity, or stored with erasure correction coding

(ECCs) to recover from failures on multiple branches. RAIF uses dynamic load balancing and dy-

namic mechanisms based on file storage types to better utilize the storage capacity and bandwidth

resources.

In this thesis we describe the current RAIF design, provide preliminary performance results

and discuss current status and future directions.



To my mom and dad



Contents

List of Figures iii

Acknowledgments iv

1 Introduction 1

2 Design 4

2.1 Stackable Fan-Out File System . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 RAIF Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Per-file Storage Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 RAIF Meta-Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Storage and Access Latency Balancing . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Data recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Implementation and current status 10

3.1 Fanout Stackable File System Implementation . . . . . . . . . . . . . . . . . . . 10

3.2 Assigning a Policy to a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 raiftab Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Asynchronous operation support . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Evaluation 14

5 Related Work 17

6 Conclusions 19

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ii



List of Figures

2.1 Linear stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Fanout stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 RAIF levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 RAIF meta-data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 RAIF superblock private data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 RAIF5 RANDOM READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 RAIF1 RANDOM READ with load balancing . . . . . . . . . . . . . . . . . . . . 15

4.3 RAIF0 Postmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



Acknowledgments

I would like to thank my advisor, Dr. Erez Zadok, for his ideas, help, and encouragement.

Nikolai Joukov was a great mentor for the entire duration of this project. His experience and

guidance were invaluable. Thank you to Dr. Tzi-cker Chiueh and Dr. Alexander Mohr for taking

the time to serve on my thesis committee and for their valuable feedback. I would also like

to thank Gopalan Sivathanu, Sean ”Viggo” Callanan and Avishay Traeger for their reviews and

endless amusements in the lab.

This work was partially made possible by an NSF CAREER award EIA-0133589, NSF award

CCR-0310493, and HP/Intel gifts numbers 87128 and 88415.1.



Chapter 1

Introduction

Redundant Array of Independent Filesystems (RAIF) is the first file system which combines the

data survivability of RAID-like storage systems at the file system level with the flexibility of being

composed from any combination of underlying storage devices. It also features the ability to apply

per-file storage policy configurations in an easy and transparent manner.

For close to two decades, grouping hard disks together to form RAIDs has been considered

a key technique for improving storage survivability and increasing data access bandwidth [27].

However, most of the existing hardware and software RAID implementations require that the

storage devices underneath be of one type. For example, several network stores and a local hard

drive cannot be seamlessly used to create a single RAID.

Traditional RAID systems implemented either in hardware or software operate at the data-

block level, where high level meta-data information is not available. It is useful to make storage

policy decisions based on metadata like file type, user ID and file size, which achieves optimal

utilization of the storage resources. For example, in a build environment, it is useful to store

C and header files more reliably than intermediate object files. But in RAID systems, the same

redundancy and recovery mechanisms are applied for all files irrespective of their importance,

resulting in suboptimal storage utilization and efficiency.

There are several implementations of RAID-like file server systems that operate over a net-

work [1,10], including implementations that combine network and local drives [9]. However, past

systems targeted some particular usage scenario and had a fixed architecture. Inflexibilities intro-

duced at design time often result in sub-optimal resource utilization. RAIF leverages the RAID

design principles at the file system level, and offers better configurability, flexibility and ease of

use in managing data security, survivability, and performance. RAIF is highly portable because it

can mount on lower file systems

The concept of applying different storage policies to different files is not new. There are

driver-based approaches [9] with hierarchical RAID levels, including compressed RAID, to im-

prove storage utilization and response time. There are hardware-based approaches [37] that build

intelligence into the array controller to implement different policies.

However, the existing techniques do not rely on high level meta information to derive their

per-file policies. Rather they rely on low level statistical data related to file accesses. This might

not always produce the best policies. For example, having a different policy for the active and

1



inactive data sets renders the system inefficient if the active data set keeps changing a lot.

A file system is the best place to implement flexible per-file storage policies, not only because it

has access to various high level meta-data, but also because there is enough freedom to implement

any kind of storage policy in software.

RAIF is a fan-out RAID-like stackable file system. Stackable file systems are a useful and

well-known technique for adding functionality to existing file systems [45]. They allow incremen-

tal addition of features and can be dynamically loaded as external kernel modules. Stackable file

systems overlay on another lower file system, intercept file system events and data bound from

user processes to the lower file system, and in turn manipulate the lower file system’s operations

and data. A different class of file systems that use a one-to-many mapping (a fan-out) has been

previously suggested [11, 29] and was recently included in the FiST [38, 45] templates.

RAIF derives its usefulness from three main features: flexibility of configurations, access to

high-level information, and easier administration.

First, because RAIF is stackable, it can be mounted over any combination of lower file systems.

For example, it can be mounted over several network file systems like NFS and Samba, AFS

distributed file systems [13] , and local file systems at the same time; in one such configuration,

fast local branches may be used for parity in a RAID4-like configuration. If the network mounts

are slow, we could explore techniques such as data recovery from parity even if nothing has failed,

because it may be faster to reconstruct the data using parity than to wait for the last data block

to arrive. Stackable file systems can be mounted on top of each other. Examples of existing

stackable file systems are: an encryption [40], data-integrity verification [17], an antivirus [23],

and a compression file system [42]. These file systems can be mounted over RAIF as well as

below it, among others.

Second, because RAIF operates at the file system level, it has access to high-level file system

meta-data that is not available to traditional RAIDs operating at the block level. This meta-data

information can be used to store files of different types using different RAID levels, optimizing

data placement and readahead algorithms to take into account varying access patterns for different

file types.

Third, administration is easier because of the following reasons.

• Files are stored on unmodified lower-level file systems, and RAIF allows a file to be stored

in any subset of the lower-level branches. The advantage of storing files on unmodified

file systems are twofold. First of all, lower branches can easily be expanded and shrunk,

either offline by copying data to other devices, or in place by using logical volume man-

agers because they give a standard file system interface. Existing backup software can be

seamlessly integrated with RAIF because all lower operations are done on files, and not

individual blocks of data.

• RAIF can transparently and concurrently use different redundancy algorithms for different

files or file types. For example, RAIF can stripe large multimedia files across different

branches for performance, and use two parity pages for important financial data files that

must be available even in the face of two failures.

• RAIF provides a unified interface for managing multiple different subsets of branches, pos-

sibly with overlapping branches, each subset having its own set of policies like RAIF level

2



and striping unit.

In this paper we introduce this new type of stackable RAID-like file system design, our current

prototype, and its preliminary evaluation. We describe some general fan-out design principles

that are applicable even beyond RAIF. The rest of the paper is organized as follows. project,

some interesting implementation details, and outlines future directions. Section 5 discusses related

work.

3



Chapter 2

Design

In this section we present the design of RAIF. The following are the design goals that we consid-

ered.

• Flexibility It is important to give a wide variety of options to the user, and administer the

system in a transparent way. Also, a user must be able to put together a complicated system

in a short time. The design of stackable file systems naturally lends itself to more flexibility.

• Reliability We use RAID semantics in order to make storage of files more reliable. We

use different RAID levels with parity and ECC branches to recover from single or multiple

failures.

• Scalability It is important to have low overheads in order to support a very large number of

lower branches. We propose methods to reduce these overheads.

2.1 Stackable Fan-Out File System

Stackable file systems are a technique to add new features incrementally to existing file systems.

As shown in Figure 2.1, the operations of a stackable file system are called by the Virtual File

System (VFS) like other file systems. They in turn calls the operations associated with the lower

level file system like ext2 or NFS, instead of performing operations directly on a storage device. A

stackable file system can be viewed as a thin layer of code in the kernel. It intercepts the file system

related calls from the VFS, applies a transformation on the data, like encryption or compression,

and then invokes the corresponding operation(s) of the lower level file system before the data

is finally written to disk, or returned to the user. Stackable file systems behave like normal file

systems from the perspective of the VFS; from the perspective of the underlying file system they

behave like the VFS.

FiST is a toolkit for building stackable file systems [45]. It has been extended to support

fan-out file systems on Linux [38]. Fan-out stackable file systems differ from linear stackable file

systems in that they operate on multiple underlying file systems, or branches. Figure 2.2 shows a

RAIF file system mounted over several different types of file systems. RAIF intercepts the calls

from VFS and passes it on to the lower branches. Data is encrypted by NCryptfs before being sent

to an untrusted NFS server. Gzipfs compresses files to save space on an in-memory file system.

4



Ext2

NCryptfs

ncryptfs_read()

ext2_read()

vfs_read()

U
se

r
K

er
ne

l

User Process

Virtual File System (VFS)

read()

Figure 2.1: Linear stacking

Linear file systems stacking: files are transparently encrypted by NCryptfs before being written to the disk

through Ext2.

Ext2 Ext2

RAIF
gzipfs_rename()

NCryptfs

NFS

gzipfs
ramfs_rename()

RAMFS

vfs_rename()

User Process
rename()

Virtual File System (VFS)

K
er

ne
l

U
se

r

raif_rename()

Figure 2.2: Fanout stacking

A possible combination of RAIF fan-out stacking and other file systems stacked linearly.

2.2 RAIF Levels

RAIF duplicates the directory structure on all the lower branches. The data files are stored using

different RAIF operations that we call levels, analogous to standard RAID levels. RAIF0 stripes

a file over the lower file systems. The striping unit may be different for different files. This

level distributes the accesses to the file among several lower branches. We define RAIF1 slightly

differently from the original RAID level 1 [27]. The original RAID level 1 definition corresponds

to RAIF01 described below; RAIF1, on the other hand, duplicates a file on all the branches.

In RAIF4, parities are calculated for every stripe and stored on a dedicated branch. This level is

useful if the parity branch is much faster than the others. RAIF5 is similar to RAIF4, but the parity

branch changes for different stripes as shown in Figure 2.4. In RAIF6, extra parity branches are

used to recover from two or more simultaneous failures. Some of these levels can be combined:

for example, RAIF01 is a combination of RAIF1 and RAIF0 arrays in such a way that a RAIF0

array is mirrored. (RAIF01 corresponds to the historical definition of RAID level 1 [27].)

5



/mnt/nfs/a.txt

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 0 Page 0

Page 1 Page 1

Page 2 Page 2

Page 3 Page 3

Page 4 Page 4

Page 5 Page 5

Page 6 Page 6

NFS:/mnt/nfs/a.txt Ext2:/local1/a.txt

Page 0

Page 0 Page 1 Page 2

Page 3 Page 4 Page 5

Page 6

/mnt/local2/a.txt

RAIF−1 RAIF−0

RAIF: /mnt/raif/a.txt

/mnt/local1/a.txt

Figure 2.3: RAIF levels

A view of how files are stored on the lower branches in RAIF levels 0 and 1

2.3 Per-file Storage Policies

RAIF supports the notion of per-file storage virtualization by providing the ability to store each file

using any combination of storage policies. It allows every file to be stored with any combination

of the following rules:

• A file can be stored in any subset of the total configured branches. This feature provides

maximum flexibility in assigning the proper branches to the respective files. For example,

in a software development environment, all C files and header files can be stored on more

reliable branches, probably with a versioning file system below, whereas temporary object

files can be stored on less-reliable branches.

• A file can be stored with any RAIF level. For example, for good performance and reliability,

multimedia files can be striped across any number of branches, whereas database files can be

striped across branches which are in turn mounted on mirrored RAID devices, like RAID 01.

• A file can be stored with any striping unit size. This needs some knowledge of the data

access pattern of the file. If the access pattern is mostly serial, like in multimedia files, a

bigger striping unit size can be used for such files. The lower level file system usually does

a good job of prefetching data, so subsequent sequential requests within the same branch

will be serviced faster. However, for files with random I/O patterns, the striping unit size

does not matter. However, having a smaller striping unit size overcomes the negative effects

of readahead for a random workload to some extent.

6



2.4 Configuration file

RAIF features a configuration file to make the job of configuring per-file storage policies easy. In

general, to achieve per-file storage virtualization, a configuration file can specify rules based on

the file size, the file name, the user and group IDs, access frequency, read-write permissions and

so on. Based on the nature of classification, there are two kinds of rules which can be specified in

the configuration file.

• Static rules These are rules which can be applied based on relatively static attributes of a

file, like file name and user/group IDs. Using hashing, we can match a large number of rules

based on these values quite efficiently.

• Dynamic rules These are rules which have to be inferred over a period of time from ob-

served system behavior. For example, the access patterns of files can be used to migrate

their RAIF levels to the most optimal configuration. Alternately, for applications whose

behavior is more or less fixed, the system could use a training set to infer rules.

2.5 RAIF Meta-Data

Small files may occupy only a portion of a single stripe. To distribute the space utilization and

accesses among the branches, we start the stripes of different files on different branches. We

call the branch where the file’s first data page is located the starting branch. The meta information

about every file includes the file’s starting branch, RAIF level, and striping unit. To delay LOOKUP

operations on all except one branch, file size and file attributes are stored together with the RAIF

per-file meta-data. The RAIF per-file meta information is stored in the file’s authoritative branch.

Branch 3

parity
parity

1

meta meta

0 2
6

3
54

Branch 0 Branch 1 Branch 2

Figure 2.4: RAIF meta-data

RAIF5 file layout on a RAIF mounted over four branches. The file size is 7 pages. Each RAIF striping unit

consists of 2 pages. The starting branch is number 2. The authoritative branch is the 1st. The meta-data

copy is stored in the 2nd branch. The meta-data size is equal to one disk block (512 bytes) which is usually

smaller than the stripe size.

Initially, the authoritative branch and the starting branch of a file are the same, calculated

based on the file name. The authoritative branch number may change after a RENAME operation.

Therefore, the corresponding meta information has to be moved appropriately. For example, if

hash(old file name) = 1 and hash(new file name) = 3 then for a file stored using the RAIF

level 4 the meta-data has to be moved from branches 0 and 1 to branches 2 and 3, respectively. Note

7



that the meta-data still contains information that 1 is the starting branch for this file. Therefore,

the file can be correctly composed from the stripe even after it is renamed.

Storing per-file metadata is optional. In the absence of metadata, the rules inferred from the

configuration file are enough to determine the subset of branches and the starting branch associated

with a file. However, upon a rename operation, the entire file has to be moved if the rule for the

old and new names has changed. On the other hand, maintaining and updating the metadata

information itself may cause overheads.

The problem of storing extra meta information on a per-file basis is well known. However, no

universal solution is available up to date. Extended Attributes (EA) associate arbitrary data with

files in a file system. Unfortunately, the working group to define an EA API within the POSIX

family of standards was unable to reach a common decision and the entire effort was abandoned

in 1,998. Some of the file systems that support EAs are compatible with the latest draft of the

specification [15], while others are based on older drafts. This resulted in a number of subtle

differences among the different implementations. NTFS’s streams [30] and HFS Plus’s named

forks also associate additional data with files but their APIs are completely different.

2.6 Storage and Access Latency Balancing

RAIF imposes virtually no limitations on the file systems that form lower branches. Therefore,

the properties of these lower branches may be substantially different. To optimize the read per-

formance, we integrated a load-balancing mechanism into RAIF which leverages replication to

dynamically balance the load. For heterogeneous configurations, the expected delay or waiting

time is often advocated as an appropriate load metric [31]. RAIF measures the times for all read

and write operations sent to lower level file systems, and uses their latencies to maintain a per-

branch delay estimate. The delay estimate is calculated by exponentially averaging the latencies

of page and meta-data operations on each individual branch. A good delay estimate can track

lasting trends in file system load, without getting swayed by transient fluctuations. We ensure this

by maintaining an exponentially-decaying average along with a deviation estimate.

Proportional share load-balancing distributes read requests to the underlying file system

branches in inverse proportion to their current delay estimates. This way, it seeks to minimize

the expected delay, and maximizes the overall throughput. For this, RAIF first converts delay esti-

mates from each of the underlying branches into per-branch weights, which are inversely related to

the respective delay estimates. A kernel thread periodically updates a randomized array of branch

indexes where each branch’s frequency of occurence is proportional to its weight. As RAIF cycles

through the array, each branch receives its proportional share of operations.

2.7 Data recovery

RAIF has built-in routines for error correction and data recovery on a page by page basis. In

RAIF level 4, a dedicated branch is used to store parity information, and in RAIF level 5, different

parity branches are used for different stripes. Regardless of the RAIF level, when a readpage

operation fails, an array of pages from a particular stripe, including the zeroed page from the failed

branch, is presented to a recovery library, which applies the parity information to recover the page

8



from the failed branch. When there is a read failure on a branch, we say that the RAIF mount is

operating in degraded mode. In this case, RAIF declares the failed branch as read-only. Files can

still be recovered using the parity branches.

9



Chapter 3

Implementation and current status

The current RAIF prototype consists of 8,293 lines of C code. Out of these, only 2,669 are RAIF

specific and 5,624 lines are common for fan-out stackable file systems. The RAIF structure is

modular so that new RAIF levels, parity and load balancing algorithms can be added without any

changes to the main code. Currently RAIF supports levels 0, 1, 4, 5.

3.1 Fanout Stackable File System Implementation

Fanout stackable file systems transform VFS calls to operate on multiple lower level branches. A

branch is nothing but a directory and its collection of files. Since RAIF operates at the file system

level, it combines the view of multiple lower branches and provides a unified view through its own

mountpoint.

The VFS provides a generic pointer in each of its objects, file, dentry, inode and

super block for every file system to store its own private data. RAIF uses of this pointer and

allocates a private data block for each of the VFS objects. The following is a list of information

that RAIF stores in the private data blocks to achieve its functionality.

• Number of branches This is the total number of underlying branches (mountpoints) that

RAIF operates upon. This is stored in the superblock. Labels can also be associated with

each branch, so that they can be used in the configuration file.

• Storage rules To support per-file storage policy configurations, all the rules specified in

the raiftab configuration file are parsed and linked to the private data block of the su-

perblock. Each rule specifies the subset of branches to use, the RAIF level, the striping unit

size, and a list of file extensions to be associated with this rule, as shown in Figure3.1. Rule

number 0 is special: it lists all the lower branches, and it is used to create directories.

• Load balancing information The latency of every read, write and lookup operation is

measured and the running average is stored per lower branch. Since load-balancing can be

applied at the granularity of a rule, the latency of a branch is updated in every rule of which

it is a part of.

10



Rule 3

private pointer

Level 5

Striping unit 3 Striping unit 1

Branches Branches Branches
4,5,6,7 0,2,5,6 8,9

RAIF superblock

Extension list Extension list Extension list

Private data block

Num branches

All branches

NA

Level 1 Level 1

Striping unit 4

Rule 1 Rule 2

Level 4

Rule 0

Num Rules

Striping unit 1

Figure 3.1: RAIF superblock private data

Superblock private data: All information needed for per-file storage policies is stored in it

3.2 Assigning a Policy to a File

Given that the super-block contains a table of rules with file extensions, all that is needed to

apply a particular policy to a file is to initialize the private data fields of the VFS objects from

the tables. The lookup method converts a filename to an inode, caching the dentry objects in

the dentry-cache during the process. By inserting a pattern matching code at relevant places

in the lookup method, we can determine the rule for that particular file, and initialize its VFS

objects with the appropriate storage parameters. For faster lookups, we hash the file extension list

associated with each rule into a table which is stored in the data block associated with that rule.

3.3 raiftab Configuration File

To make the job of configuring per-file policies easy, RAIF supports a configuration file which

is similar to the raidtab configuration file for configuring RAID devices. The format of the

raiftab file is as shown below.

raifmnt /mnt/raif

nr-raif-branches 6

11



raif-branch fs1

branch /branch/nfs1

raif-branch ext2-1

branch /branch/local1

raif-branch ext2-2

branch /branch/local2

raif-branch ext3-1

branch /branch/local3

raif-branch versionfs1

branch /branch/version

raif-branch ncryptfs1

branch /branch/secure

nr-raif-rules 3

raif-rule multimedia

raif-level 1

stripe-unit 4

numbranch 2

branch-ids nfs1,local1

files ".mpeg", ".jpg", ".rm"

raif-rule Sw-dev

raif-level 1

stripe-unit 1

numbranch 2

branch-ids ext3-1, versionfs1

files ".c", ".cpp", ".h"

raif-rule default

raif-level 0

stripe-unit 1

numbranch 3

branch-ids ext2-1,ext2-2,ext3-1

The sample configuration shown above depicts a scenario where multiple file types can be

managed easily with the raiftab configuration file. The keyword raifmnt specifies the RAIF

mountpoint. This path is the only one that is visble to all the applications wanting to make use

of RAIF as their storage system. The configuration file also specifies a number of rules, each one

specified by the raif-rule keyword. Currently in our implementation, a rule is the smallest

level of configuration granularity. For every rule, the user can specify the RAIF level, the striping

unit size, the subset of branches to store the files on, and a list of file extensions or patterns to

match against this rule. In our example configuration, the rule labeled multimedia is specified

for multimedia files, which are mirrored on a local hard-drive and a more reliable NFS server.

This gives performance advantages to the user, because there is a local copy of data as well. With

the rule labeled Sw-dev, source code is mirrored on a local hard-drive and on a versionfs [26]

branch. Any update that the user makes to source files will be automatically and transparently

versioned by versionfs, providing the most up to date version of a file. The rule labeled default

12



is matched against all those files that do not match any of the above rules, and it is configured for

performance using RAIF0, but not necessarily reliability.

3.4 Asynchronous operation support

An area of concern specific for fan-out stackable file systems is the sequential execution of VFS

requests. It dramatically increases latency of VFS operations that require synchronous accesses to

several branches. For example, RAIF5 synchronously reads data and parity pages before a small

write operation can be initiated. RAIF also buffers pages at its level. To avoid double buffering,

the data pages should be shared not only between lower and upper file systems but also between

several lower file systems and an upper one. We are currently working on solving this. However, it

is important to understand that it only increases the latency of certain file system operations while

this has little impact on the aggregate RAIF performance under a workload generated by many

concurrent processes.

Our current development efforts are concentrated on the performance enhancements of the

general fan-out templates. We are exploring the effects of delaying some VFS operations on non-

authoritative branches. In the future, we plan to add support for EAs, dynamic adjustment of RAIF

levels and other storage policies, and provide advanced data recovery procedures in the kernel.

13



Chapter 4

Evaluation

This section describes the performance of the current RAIF prototype. Performance measure-

ments were made with different RAIF levels and different number of branches. Scenarios with a

combination of local and network file systems were also tested for performance.

We conducted our benchmarks on a 1.7GHz Pentium 4 machines with 1GB of RAM. The ma-

chine was equipped with four Maxtor Atlas 15,000 RPM 18.4GB Ultra320 SCSI disks formatted

with Ext2. It was running Linux kernel version 2.6.13.3. We used autopilot [39] to carry out the

benchmarks. Autopilot was configured to format the lower file systems before every run. The

lower file systems were remounted before every benchmark run to purge the page cache. We ran

each test at least 3 times and obtained mean values for the elapsed, system, user and wait times.

Wait time, the elapsed time less CPU time used, consists mostly of I/O, but process scheduling

can also affect it. In each case, the half-widths of the confidence intervals were less than 5% of

the mean.

We ran the following two benchmarks:

• Postmark [18] simulates the operation of electronic mail servers. It performs a series of file

appends, reads, creations, and deletions. We configured Postmark to create 20,000 files,

between 512–10K bytes, and perform 200,000 transactions. Create, delete, read, and write

operations were performed with equal probability.

• RANDOM-READ is a benchmark designed to evaluate RAIF under a heavy load of random

data read operations. It spawns 32 child processes and concurrently reads 32,000 randomly-

located 512 byte blocks from 16GB files. The load on the lower branches fluctuates because

of the randomness of the read pattern. In particular, a branch may be idle for some time,

if all the reading processes have sent their requests to the other branches. Our experiments

showed that 32 processes are sufficient to make these random fluctuations negligible.

We call a test configuration RAIF-N BR, where N is the number of branches. We call RAIFL

a RAIF file system where all files are stored using RAIF level L.

Figure 4.1 shows the RANDOM READ benchmark results for plain Ext2 and RAIF5 with 1,2,

3 and 4 branches. It is clearly an I/O intensive workload, with over 99% of the time being spent

in I/O wait time. Since CPU time is so minimal, the elapsed times for Ext2 and RAIF5 with one

14



branch are almost the same. The I/O time is dominated by the disk seek time. The elapsed time

decreases well with the increase in number of branches. The benchmark runs 1.5 times faster

with RAIF-2BR than with RAIF-1BR, 1.8 times faster with RAIF-3BR and 1.95 times faster with

RAIF-4BR.

 0

 20

 40

 60

 80

 100

 120

 140

Ext2 RAIF-1BR RAIF-2BR RAIF-3BR RAIF-4BR

127s 127s

87s

72s
65s

E
la

ps
ed

 ti
m

e 
(s

ec
)

Wait
User

System

Figure 4.1: RAIF5 RANDOM READ

RANDOM READ benchmark results for plain Ext2 and RAIF5

Figure 4.2 shows the RANDOM READ benchmark for two heterogeneous branches mounted

with RAIF1. One branch is an Ext2 branch on a fast SCSI disk, and the other branch is an Ext2

branch on a slower IDE disk (Western Digital 30GB IDE disk, 7,000 rpm with 2MB on-disk

cache). Without load-balancing, the read requests always go to the first disk, which is quite slow.

Compared to RAIF5-1BR , RAIF1-2BR is 18.2% slower because the requests go to the slower disk.

Compared to RAIF5-2BR, it is 72.5% slower. However, with load balancing turned on, the read

requests are proportionally distributed among the two disks, and hence compared to RAIF5-2BR,

the overhead drops to 12%. Since the RANDOM READ benchmark issues 1,000 requests, and the

IDE disk is 18% slower than the SCSI disk, the I/O wait times are more or less justified, because

it is a random workload and there will be some variations.

 0

 20

 40

 60

 80

 100

 120

 140

 160

RAIF1-NOLB RAIF1-LB

150s

98s

E
la

ps
ed

 ti
m

e 
(s

ec
)

Wait
User

System

Figure 4.2: RAIF1 RANDOM READ with load balancing

RANDOM READ for heterogeneous branches and with load-balancing

Postmark is the second I/O-intensive benchmark we ran. Figure 4.3 shows the result for

RAIF0.

15



 0

 50

 100

 150

 200

 250

Ext2 RAIF-1BR RAIF-2BR RAIF-3BR RAIF-4BR

204s 203s

238s

193s
204s

E
la

ps
ed

 ti
m

e 
(s

ec
)

Wait
User

System

Figure 4.3: RAIF0 Postmark

Postmark benchmark results for plain Ext2 and RAIF0 mounted on 1,2,3 and 4 Ext2 branches

The system time overheads increase linearly because operations like OPEN, CLOSE and LOOKUP

are performed serially on all branches. . Compared to a plain Ext2 branch, the system overhead for

RAIF0-1BR is 30.5%, for RAIF0-2BR is 90%, for RAIF0-3BR is 122% and RAIF0-4BR is 138%.

For a small number of rules specified in the configuration file, the overheads are almost neg-

ligible. We are in the process of designing an extensible policy-matching scheme which can be

used to include more attributes than just file names.

Our current RAIF prototype has modest system time overheads. It reduces elapsed time con-

siderably for I/O-intensive workloads by balancing and distributing the load of lower branches.

Especially for random I/O workloads, the benefits increase linearly with the number of branches

that are added. However, system time optimizations are needed to improve scalability and decrease

latency of individual file system operations.

16



Chapter 5

Related Work

Striping and replication of data are well known methods used to improve performance and fault-

tolerance of secondary storage. RAID [27], which was introduced in the late 80’s, had configu-

rations for different combinations of striping, mirroring, and parity-based failure recovery. Tradi-

tional RAID is composed of homogeneous components. However, algorithms were later proposed

for supporting heterogenuous components in RAID [7]. Striping is primarily used for paralleliz-

ing and load balancing read and write requests across different devices to improve performance.

The original RAID was proposed as a hardware-level mechanism where the striping and mirroring

logic was embedded into a special hardware device known as the RAID controller. Later, RAID

was implemented at the device driver level [4] so that ad-hoc configurations were possible with-

out requiring specialized hardware components. RAIF performs RAID-like operations at a layer

above even device drivers: at the file system level.

There are several implementations of RAID-like file server systems that operate over a net-

work [1, 10, 14], including implementations that combine remote and local drives [9]. However,

past systems targeted particular usage scenarios and mostly had fixed architectures. Zebra is a

distributed file system that uses standard network protocols for communications between its com-

ponents [10]. Zebra uses only file-based and log-based striping with parity. In contrast, RAIF’s

stacking architecture allows it to utilize the functionality of existing file systems and to support a

variety of configurations without any modifications to the source code. Media distribution servers

use data striping and replication to distribute the load among servers [1, 6]. The stripe unit size

and degree of striping have been shown to influence the performance of these servers [32]. RAIF

effectively mixes striping with other data placement techniques as needed.

Data grids require high availability and efficiency [41]. The choice of data placement and

management schemes plays a crucial role in realizing these goals [20,33]. Data grids are typically

composed of highly heterogeneous storage and network resources. Fault-tolerance and dynamic

re-configuration are key for successful operation in such scenarios [21]. Grids also implement

several mechanisms, like striping, streaming, and on-demand caching [24], to efficiently serve

a wide range of access patterns. Even the early RAIF implementation realized these goals by

bringing the rich set of RAID configurations to the file system level [16].

RAIF provides virtualization at a per-file level. Policies regarding the RAID method to be

adopted can be chosen at the granularity of a file type. The idea of using different RAID levels for

17



different data access patterns was used in several projects at the driver [9] and hardware levels [37].

However, the lack of higher-level information forced the developers to make decisions based solely

on statistical information. D-GRAID [34] uses a Semantically-Smart Disk System [35] to infer

file system semantics at the disk level and tailor its internal RAID schemes for different classes of

file system data. It performs selective metadata replication, where metadata blocks are replicated

to a higher degree than raw data blocks, and fault-isolated data placement, where semantically

related blocks are placed within the storage array’s unit of fault-containment. By doing this, D-

GRAID achieves a graceful decline of availability in the event of multiple disk failures. Timothy

et al. developed Exposed RAID (E×RAID [8]) to enable file systems to tailor their storage man-

agement mechanisms by revealing information about parallelism and failure isolation boundaries,

track performance, and failure characteristics to the file systems. They also built a file system

called Informed Log-structured file system (I.LFS) that uses E×RAID to provide functionalities

like dynamic load balancing, user control of file replication, and delayed replication of files for

improved performance.

RAIF offers file-level virtualization as a stackable file system and hence does not require

explicit information exchange from the storage system to the file system. Initial RAIF Solaris

ZFS [36] performs dynamic striping across disks to maximize throughput, using the notion of

virtual storage pools. The components in a storage pool can be hetergenous and disks can be

added or removed from the storage pools thereby dynamically expanding or shrinking the file

system size.

RAIF is implemented as a stackable file system [43]. Stackable file systems are not new [44].

Originally introduced in the early 90s [29], stackable file systems were propsed to augment the

functionality of existing file systems by transparently mounting a layer above them. Normal stack-

able file systems mount on top of a single lower level file system. Several stackable file systems

exist today that provide functionalities like encryption [40], versioning [25], tracing [2], intrusion

detection [17], and more. A class of stackable file systems known as fan-out mount on top of more

than one file system to provide useful functionality [11, 29]. However, so far the most common

application of fan-out has been unioning [3,12,19,28,38]. RAIF is a stackable fan-out file system

that can mount on top of many underlying file systems, to provide RAID-like functionality.

Replication in RAIF uses proportional-share load balancing using the expected delay as the

load metric. This approach is generally advocated for heterogeneous systems [31]. However,

when the workload includes a mix of random and sequential operations, the number of I/O oper-

ations performed may be a more suitable load metric [22]. Traffic shaping systems allow better

control over the bandwidth utilization and allow bandwidth dedication for particular users and

applications [5].

18



Chapter 6

Conclusions

RAIF combines high flexibility, portability, reliability, and simplicity. This makes it a general so-

lution to many existing file system architecture problems. Like RAID systems, RAIF can provide

improved data survivability, data management and performance. For read requests, it can recover a

corrupted file on-the-fly using parity. RAIF supports the notion of per-file storage virtualization by

allowing users the freedom to store any file with any combination of storage parameters, including

the set of branches, RAID level, and striping unit size. For example, RAIF can dynamically place

more important data on more secure but possibly slower or smaller file systems. RAIF provides

load balancing by directing write and read operations to the most appropriate lower file systems.

By default, RAIF uses a set of rules derived from its configuration file to assign storage prop-

erties to individual files. The rules can be based on the patterns for file names or locations, file

owners, and attributes. Also, users can change storage properties on the per-file basis. In that case

RAIF stores extra information called TAG for every file. This results in more flexible configura-

bility but also decreases RAIF performance.

RAIF distributes requests among lower branches and thus decreases the average I/O time.

However, it adds system time overheads that linearly increases with the number of branches. For a

small number of branches, RAIF has modest overheads and frequently operates faster than single-

storage file systems.

6.1 Future Work

In the future, we plan to improve performance and usability of RAIF:

• We are exploring a number of techniques to improve RAIF’s efficiency, including delayed

writes, simultaneous writes to all branches, zero-copying, and advanced page caching.

• We plan to implement hot-spare branch support. While a recovery mechanism, like kernel

thread or a user daemon recovers data from the failed branch to the hot-spare branch, the

file system can continue to service read requests using the recovery library. Write requests

can be directed to the hot-spare branch.

• We plan to implement a checkpointing mechanism so that the recovery process does not

have to be restarted if interrupted.

19



• We are designing better ways to store meta-data information. The overheads associated

with renaming files and changing their storage policies can be reduced if we store per-file

metadata in the form of tags or Extended Attributes.

• We are trying to make more informed storage decisions not only based on file names, but

also based on other attributes like user IDs, permissions, and access patterns.

20



Bibliography

[1] S. Anastasiadis, K. Sevcik, and M. Stumm. Maximizing Throughput in Replicated Disk

Striping of Variable Bit-Rate Streams. In Proceedings of the Annual USENIX Technical

Conference, pages 191–204, Monterey, CA, June 2002.

[2] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: a file system to trace them all. In Proceed-

ings of the USENIX Conference on File and Storage Technologies (FAST), pages 129–143,

San Francisco, CA, March/April 2004. USENIX Association.

[3] AT&T Bell Laboratories. Plan 9 – Programmer’s Manual, March 1995.

[4] A. Brown and D. Patterson. Towards Availability Benchmarks: A Case Study of Software

RAID Systems. In Proceedings of the Annual USENIX Technical Conference, pages 263–

276, San Diego, CA, June 2000. USENIX Association.

[5] T. Chiueh, K. Gopalan, A. Neogi, C. Li, S. Sharma, S. Shan, J. Chen, W. Li, N. Joukov,

J. Zhang, F. Hsu, F. Guo, and S. Doong. Sago: A Network Resource Management System for

Real-Time Content Distribution. In Proceedings of the International Conference on Parallel

and Distributed Systems (ICPADS’02), pages 557–562, National Central University, Taiwan,

ROC, December 2002.

[6] C. Chou, L. Golubchik, and J. C. S. Lui. Striping doesn’t scale: How to achieve scalability

for continuous media servers with replication. In International Conference on Distributed

Computing Systems, pages 64–71, Taipei, Taiwan, April 2000.

[7] T. Cortes and J. Labarta. Extending Heterogeneity to RAID level 5. In Proceedings of

the Annual USENIX Technical Conference (ATC), pages 119–132, Boston, MA, June 2001.

USENIX Association.

[8] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Bridging the information

gap in storage protocol stacks. In Proceedings of the Annual USENIX Technical Conference,

pages 177–190, Monterey, CA, June 2002. USENIX Association.

[9] K. Gopinath, N. Muppalaneni, N. Suresh Kumar, and P. Risbood. A 3-tier RAID stor-

age system with RAID1, RAID5, and compressed RAID5 for Linux. In Proceedings of

the FREENIX Track at the 2000 USENIX Annual Technical Conference, pages 21–34, San

Diego, CA, June 2000. USENIX Association.

21



[10] J. Hartman and J. Ousterhout. The Zebra Striped Network File System. In Proceedings of the

14th Symposium on Operating Systems Principles, pages 29–43, Asheville, NC, December

1993. ACM.

[11] J. S. Heidemann and G. J. Popek. File system development with stackable layers. ACM

Transactions on Computer Systems, 12(1):58–89, February 1994.

[12] D. Hendricks. A Filesystem For Software Development. In Proceedings of the USENIX

Summer Conference, pages 333–340, Anaheim, CA, June 1990.

[13] J. H. Howard. An Overview of the Andrew File System. In Proceedings of the Winter

USENIX Technical Conference, February 1988.

[14] L. Huang, G. Peng, and T. Chiueh. Multi-dimensional Storage Virtualization. In Proceedings

of the 2004 ACM SIGMETRICS Conference on Measurement and Modeling of Computer

Systems, pages 14–24. ACM Press, June 2004.

[15] IEEE/ANSI. Information Technology–Portable Operating System Interface (POSIX)–Part

1: System Application Program Interface (API)—Amendment: Protection, Audit, and Con-

trol Interfaces [C Language]. Technical Report STD-1003.1e draft standard 17, ISO/IEC,

October 1997. Draft was withdrawn in 1997.

[16] N. Joukov, A. Rai, and E. Zadok. Increasing distributed storage survivability with a stackable

raid-like file system. In Proceedings of the 2005 IEEE/ACM Workshop on Cluster Security, in

conjunction with the Fifth IEEE/ACM International Symposium on Cluster Computing and

the Grid (CCGrid 2005), pages 82–89, Cardiff, UK, May 2005. IEEE. (Won best paper

award).

[17] A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: An In-Kernel Integrity Checker

and Intrusion Detection File System. In Proceedings of the 18th USENIX Large Installation

System Administration Conference (LISA 2004), pages 69–79, Atlanta, GA, November 2004.

USENIX Association.

[18] J. Katcher. PostMark: a new filesystem benchmark. Technical Report TR3022, Network

Appliance, 1997. www.netapp.com/tech_library/3022.html.

[19] D. G. Korn and E. Krell. A New Dimension for the Unix File System. Software-Practice

and Experience, 20(S1):19–34, June 1990.

[20] T. Kosar and M. Livny. Stork: making data placement a first class citizen in the grid. In

International Conference on Distributed Computing Systems, March 2004.

[21] Erwin Laure. The Architecture of the European DataGrid. Technical report, The European

DataGrid Project Team, March 2003. www.twgrid.org/event/isgc2003/ISGC_

pdf/The_Architecture_of_EDG.pdf.

[22] Ixora Pty Ltd. Disk load balancing. www.ixora.com.au/tips/tuning/disk_

load.htm.

22



[23] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok. Avfs: An On-Access Anti-Virus File

System. In Proceedings of the 13th USENIX Security Symposium (Security 2004), pages

73–88, San Diego, CA, August 2004. USENIX Association.

[24] R. W. Moore, I. Terekhov, A. Chervenak, S. Studham, C. Watson, and H. Stockinger. Data

Grid Implementations. Technical report, Global Grid Forum, January 2002. www.ppdg.

net/docs/WhitePapers/Capabilities-grids.v6.pdf.

[25] K. Muniswamy-Reddy. Versionfs: A versatile and user-oriented versioning file system.

Master’s thesis, Stony Brook University, December 2003. Technical Report FSL-03-03,

www.fsl.cs.sunysb.edu/docs/versionfs-msthesis/versionfs.pdf.

[26] K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and E. Zadok. A Versatile and User-

Oriented Versioning File System. In Proceedings of the USENIX Conference on File

and Storage Technologies (FAST), pages 115–128, San Francisco, CA, March/April 2004.

USENIX Association.

[27] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of inexpensive disks

(RAID). In Proceedings of the ACM SIGMOD, pages 109–116, Chicago, IL, June 1988.

ACM Press.

[28] J. S. Pendry and M. K. McKusick. Union mounts in 4.4BSD-Lite. In Proceedings of the

USENIX Technical Conference on UNIX and Advanced Computing Systems, pages 25–33,

New Orleans, LA, December 1995. USENIX Association.

[29] D. S. H. Rosenthal. Evolving the Vnode interface. In Proceedings of the Summer USENIX

Technical Conference, pages 107–118, Anaheim, CA, June 1990. USENIX Association.

[30] M. Russinovich. Inside Win2K NTFS, Part 1. www.winnetmag.com/Articles/

ArticleID/15719/pg/2/2.html, November 2000.

[31] B. Schnor, S. Petri, R. Oleyniczak, and H. Langendorfer. Scheduling of parallel applications

on heterogeneous workstation clusters. In Proceedings of PDCS’96, the ISCA 9th Interna-

tional Conference on Parallel and Distributed Computing Systems, pages 330–337, Dijon,

France, September 1996.

[32] P. Shenoy and H. M. Vin. Efficient striping techniques for variable bit rate continuous media

file servers. Technical Report UM-CS-1998-053, University of Massachusetts at Amherst,

1998.

[33] A. Shoshani, A. Sim, and J. Gu. Storage Resource Managers: middleware components for

grid storage. In Proceedings of the Nineteenth IEEE Symposium on Mass Storage Systems,

April 2002.

[34] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Improving

storage system availability with D-GRAID. In Proceedings of the USENIX Conference on

File and Storage Technologies (FAST), pages 15–30, San Francisco, CA, March/April 2004.

USENIX Association.

23



[35] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Semantically-smart disk systems. In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST), pages 73–88, San Francisco, CA,

March 2003. USENIX Association.

[36] Sun Microsystems, Inc. Solaris ZFS file storage solution. Solaris 10 Data Sheets, 2004.

www.sun.com/software/solaris/ds/zfs.jsp.

[37] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID Hierarchical Storage

System. ACM Transactions on Computer Systems, 14(1):108–136, February 1996.

[38] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, E. Zadok, and M. N. Zubair. Versatility

and Unix Semantics in a Fan-Out Unification File System. Technical Report FSL-04-01b,

Computer Science Department, Stony Brook University, October 2004. www.fsl.cs.

sunysb.edu/docs/unionfs-tr/unionfs.pdf.

[39] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and E. Zadok. Auto-pilot: A Platform

for System Software Benchmarking. In Proceedings of the Annual USENIX Technical Con-

ference, FREENIX Track, pages 175–187, Anaheim, CA, April 2005. USENIX Association.

[40] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A secure and convenient cryptographic

file system. In Proceedings of the Annual USENIX Technical Conference, pages 197–210,

San Antonio, TX, June 2003. USENIX Association.

[41] William Yurcik, Xin Meng, Gregory A. Koenig, and Joseph Greenseid. Cluster Security as a

Unique Problem with Emergent Properties: Issues and Techniques. In 5th LCI International

Conference on Linux Clusters, May 2004.

[42] E. Zadok, J. M. Anderson, I. Bădulescu, and J. Nieh. Fast indexing: Support for size-

changing algorithms in stackable file systems. In Proceedings of the Annual USENIX Tech-

nical Conference (ATC), pages 289–304, Boston, MA, June 2001. USENIX Association.

[43] E. Zadok and I. Bădulescu. A stackable file system interface for Linux. In LinuxExpo

Conference Proceedings, pages 141–151, Raleigh, NC, May 1999.

[44] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P. Wright. On incremental file system

development. ACM Transactions on Storage (TOS), 2(2):161–196, May 2006.

[45] E. Zadok and J. Nieh. FiST: A language for stackable file systems. In Proceedings of the

Annual USENIX Technical Conference, pages 55–70, San Diego, CA, June 2000. USENIX

Association.

24


