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Abstract Transactions require satisfaction of the four ACID

roperties: Atomicity, Consistency, Isolation, and Dura-
ility. Enforcing these properties appears to require
any OS changes, including a unified cache man-

API. User applications, however, use a different file- ) .

. . ger [12] and support for logging and recovery. Despite
access API (POSIX) which does not offer transactional . X . )

L ) . the complexity of supporting ACID semantics on file
guarantees. Applications using transactions can become : ;
) : L operations [30], Microsoft [43] and others [4,44] have
simpler, smaller, easier to develop and maintain, more L . ; . !
. shown significant interest in transactional file systems.
reliable, and more secure. We explored several tech=, ". . ; L
Their interestis not surprising: developers are consyantl

nigues how to provide transactional file access with min-_ . S ;
reimplementing file cleanup and ad-hoc locking mecha-

imal impact on existing programs. Our first prototype ) . X X
I .~ nisms which are unnecessary in a transactional file sys-
was a standalone kernel component within the Linux

. . : tem. A transactional file system does not eliminate the
kernel, but it complicated the kernel considerably and . : .
) o - . need for locking and recovery, but by exposing an inter-
duplicated some of Linux’s existing facilities. Our sec-

ond prototype was all in user level, and while it was face to specify transactional properties allows applica-

easier to develop, it suffered from high overheads. Intlon programmers to reuse locking, logging, and recov-

this paper we describe our latest prototype and the evos code. Defending against TOCTTOU (time of check

) ; . . . _till time of use) security attacks also becomes easier [28,
lution that led to it. We implemented a transactional file 29] because sensitive operations are easily isolated from
API inside the Linux kernel which integrates easily and P y

seamlessly with existing kernel facilities. This design is 2N intruder's operations. Security and quality guaran-

: o . . - tees for control files, such as configuration files, are be-
easier to maintain, simpler to integrate into existing OSs, ~ . .
coming more important. The number of programs run-

and efficient. We evaluated our prototype and other sys- . . .
. ing on a standard system continues to grow along with
tems under a variety of workloads. We demonstrate tha o ) . .
, . he cost of administration. In Linux, the CUPS print-
our prototype’s performance is better than comparable . X
: ing service, the Gnome desktop environment, and other
systems and comes close to the theoretical lower bound’® ™ . . . L
. services all store their configurations in files that can be-
for a log-based transaction manager. ; : i
come corrupted when multiple writers access them or if

1 Introduction the system crashes unexpectedly. Despite the existence

In the past, providing a transactional interface to filesOf database interfaces, many programs still use configu-
typically required developers to choose from two un- ration files for their simplicity, generality, and because a
desirable options: (1) modify complex file system codelarge collection of existing tools can access these simple
in the kernel or (2) provide a user-level solution which configuration files. For example, Gnome stores over 400
incurs unnecessary overheads. Previous in-kernel decontrol files in a user's home directory. A transactional
signs either had the luxury of designing around transdile interface is useful to all such applications.

actions from the beginning [33] or limited themselves To provide ACID guarantees, a file interface must be
to supporting only one primary file system [43]. Previ- able to mediate all access to the transactional file system.
ous user-level approaches were implemented as librariehis forces the designer of a transactional file system to
(e.g., Berkeley DB [39], and Stasis [34]) and did not sup-put a large database-like runtime environment either in
port interaction through the VFS [15] with other non- the kernel or in a kernel-like interceptor, since the ker-
transactional processes. These libraries also introducekl typically services file-system system calls. This en-
a redundant page cache and provided no support to nomironment must employ abortable logging and recovery
transactional processes. This paper presents the desigmechanisms that are linked into the kernel code. VFS-
and evaluation of a transactional file interface that re-cache rollback is also required to revert an aborted trans-
quires modifications to neither existing file systems noraction [44], its stale inodes, dentries, and other in-kierne
applications, yet guarantees atomicity and isolation fordata structures. The situation can be simplified drasti-
standard file accesses using the kernel’'s own page cacheally if one abandons the requirement that the backing

Transactions offer a powerful data-access methocg
used in many databases today trough a specialized que



store for file operations must be able to interact withas the default, offeringsync(2) [9] as the accepted
other transaction-oblivious processes (eggep ), and  means to block until data is safely written to disk. Valor
by duplicating the functionality of the page cache in has an analogous function to provide durable commits.
user space. This concession is often made by transad-his makes sense in a file-system setting as most opera-
tional libraries such as Berkeley DB [39] and Stasis [34]:tions are easily repeatable. For non-durable transagtions
they provide a transactional interface only to a single fileValor's overhead on top of an idealized mock logging
and they do not solve the complex problems of rewind-implementation is only 35% (see Section 4).
ing the page cache and stale in-memory structures af- The rest of this paper is organized as follows. In Sec-
ter a process aborts. Systems such as QuickSilver [33]Jon 2 we describe previous experiences with designing
and TxF [43] address this trade-off between the com+transactional systems and related work that have led us
pleteness and implementation size by redesigning a spee Valor. We detail Valor’s design in Section 3 and eval-
cific file system around proper support for transactionaluate its performance in Section 4. We conclude and pro-
file operations. In this paper we show that such a repose future work in Section 5.
designis unnecessary, and that every file system can prg-
vide a transactional interface without requiring special-% Background
ized modifications. We describe our system which useShe most common approach for transactions on stable
a seamless approach to provide transactional semantigsorage is using a relational database, such as an SQL
using a new dynamically loaded kernel module, and onlyserver (e.g., MySQL [22]) or an embedded database li-
minor modifications to existing kernel code. Our tech-brary (e.g., Berkeley DB [39]); but they have also long
nique keeps kernel complexity low yet still offers a full- been a desired programming paradigm for file systems.
fledged transactional file interface without introducing By providing a layer of abstraction for concurrency, er-
unnecessary overheads for non-transactional processegor handling, and recovery, transactions enable simpler,
We call our file interfacevalor. Valor relies on im-  more robust programs. Valor's design was informed by
proved locking and write ordering semantics that wetwo previous file systems we developed using Berkeley
added to the kernel. Through a kernel module, it alsoDB: KBDBFS and Amino [44]. Next we discuss jour-
provides a simple in-kernel logging subsystem opti-naling file systems’ relationship to our work, and we fol-
mized for writing data. Valor's kernel modifications low with discussions on database file systems and APIs.
are small and easily separable from other kernel com- . .
ponents; thus introducing negligible kernel complexity. 2.1 Beyond Journaling File Systems
Processes can use Valor’s logging and locking interfacegournaling file systems suffer from two draw-backs: (1)
to provide ACID transactions using seven new systenmhey must store all data modified by a transaction in
calls. Because Valor enforces locking in the kernel, itRAM until the transaction commits and (2) their journals
can protect operations that a transactional process pegre not designed to be accessed by user processes [16,
forms from any other process in the system. Valor abort31,42]. Journaling file systems store only enough in-
a process’s transaction if the process crashes. Valor supormation to commit a transaction already stored in the
ports large and long-living transactions. This is not pos-log (redo-only record). This results in journaling file
sible forext3 , XFS, or any other journaling file system: systems being forced to contain all data for all in-flight
these systems can only abort the entire file system jourtransactions in RAM [6,7,42]. For metadata transac-
nal, and only if there is a hardware 1/O error or the entireﬂons' which are finite in size and duration, journaling
system crashes. These systems’ transactions must glte systems are a convenient optimization. However, we
ways remain in RAM until they commit (see Section 2). wanted to provide user processes with transactions that
Another advantage of our design is that it is imple- could be megabytes large and run for long periods of
mented on top of an unmodified file system. This resultgime. The RAM restriction of a journaling file system is
in negligible overheads for processes not using transtoo limiting to support versatile file-based transactions.
actions: they simply access the underlying file system, Two primary approaches were used to provide file-
only using the Valor kernel modifications to acquire nec-system transactions to user processesDgtabase file
essary locks. Using tried-and-true file systems also prosystemsrovide transactions to user processes by mak-
vides good performance compared to systems that coning fundamental changes to the design of a standard file
pletely replace the file system with a database. Valoisystem to support better logging and rollback of inodes,
runs with a statistically indistinguishable overhead ondentries, and cached pages [33, 36, 43]. M2tabase
top ofext3 under typical loads when providing a trans- access APlgrovide transactions to user processes by
actional interface to a number of sensitive configurationoffering a user library that exposes a transactional page
files. Valor is designed from the beginning to run well file. Processes can store application data in the page file
without durability. File system semantics accept thisby using library-specific API routines rather than storing



their data on the file system [34, 39]. Valor represents arAPIs and requires each OS component to provide spe-
alternative to the above two approaches. Valor's desigrific rollback and commit support. We wanted to al-

was settled after designing KBDBFS and Amino [44]. low existing applications and OS components to remain
We discuss KBDBFS and Amino in their proper con- largely unmodified, and yet allow them to be augmented

texts in Sections 2.2 and 2.3, respectively. with simple begin, commit, and abort calls for file sys-
) tem operations. We wanted to provide transactions with-
2.2 Database File Systems out requiring fundamental changes to the OS, and with-

KBDBFS was an in-kernel file system built on a port of out restricting support to a particular file system, so that
the Berkeley Database [39] to the Linux kernel. It was applications can use the file system most suited to their
part of a larger project that explored uses of a relationalork load on any standard OS. Lastly, we did not want
database within the kernel. KBDBES utilized transac-t0 incur any overheads on non-transactional processes.
tions to provide file-system—level consistency, but did Inversion File System [24], OdeFS [5], iFS [26], and
not export these same semantics to user-level program®BFS [21] are database file systems implemented as
It became clear to us that unlocking the potential value otiser-level NFS servers [17]. As they are NFS servers
a file system built on a database required exporting thesévhich predate NFSv4's locking and callback capabil-
transactional semantics to user-level applications. KBities [38]), the NFS client's cache can serve requests
DBFS could not eas”y export these semantics to user\NithOUt Consulting the NFS server’s database; this could
level applications, because as a standard kernel file sygllow a client application to write to a portion of the file
tem in Linux it was bound by the VFS to cache various System that has since been locked by another applica-
objects (e.g., inodes and directory entries), all of whichtion, violating the client application’s isolation. Thep d
ran the risk of being rolled back by the transaction. Tonot address the problem of supporting efficient transac-
export transactions to user space, KBDBFS would theretions on the local disk.
fore be required to either bypass the VFS layers that re;
quire these cached objects, or alternatively track eacI?'3 Database Access API's
transaction’s modifications to these objects. The firstThe other common approach to providing a transactional
approach would require major kernel modifications andinterface to applications is to provide a user-level li-
the second approach would duplicate much of the logbrary to store data in a special page file or B-Tree main-
ging that BDB was already providing, losing many of tained by the library. Berkeley DB offers a B-Tree, a
the benefits provided by the database. hash table, and other structures [39]. Stasis offers a
Our design of KBDBFS was motivated in part by a page file [34]. These systems require applications to use
desire to modify the existing Linux kernel as little as database-specific APIs to access or store data in these
possible. Another transaction system which modifiedlibrary-controlled page files.
an existing OS was Seltzer's log-structured file system, Based on our experiences with KBDBFS, we chose
modified to support transaction processing [37]. Seltzetto prototype a transactional file system, again built on
et al's simulations of transactions embedded in the fileBDB, but in user space. Our prototype, Amino, utilized
system showed that file system transactions can performinux’s process debugging interfagarace [8], to ser-
as well as a DBMS in disk-bound configurations [35]. vice file-system—related calls on behalf of other pro-
They later implemented a transaction processing (TPEesses, storing all data in an efficient Berkeley DB B-tree
system in a log-structured file system (LFS), and com-schema. Through Amino we demonstrated two main
pared it to a user-space TP system running over LFS anfdleas. First, we revealed the ability to provide trans-
a read-optimized file system [37]. actional semantics to user-level applications. Second,
Microsoft's TxF [19,43] and QuickSilver's [33] we showed the benefits that user-level programs gain
database file systems leverage the early incorporation affhen they use these transactional semantics: program-
transactions support into the OS. TxF exploits the transming model simplification and application-level con-
action manager which was already present in Windowssistency [44]. Although we extendggirace to re-
TxF uses multiple file versions to isolate transactionalduce context switches and data copies, Amino’s per-
readers from transactional writers. TxF works only with formance was still poor compared to an in-kernel file
NTFS and relies on specific NTFS modifications andsystem for some system-call-intensive workloads (such
how NTFS interacts with the Windows kernel. Quick- as the configuration phase of a compile). Finally, al-
Silver is a distributed OS developed by IBM Researchthough Amino’s performance was comparable to Ext3
that makes use of transactional IPC [33]. QuickSilverfor metadata workloads (such as Postmark [14]), for
was designed from the ground up using a microkernebata-intensive workloads, Amino’s database layout re-
architecture and IPC. To fully integrate transactions intosulted in significantly lower throughput. Amino was a
the OS, QuickSilver requires a departure from traditionalsuccessful project in that it validated the concept of a



transactional file system with a user-visible transactionaisolation that in our previous prototypes was provided
API, but the performance we achieved could not displacéoy the database’s locking facility. Simple write ordering
traditional file systems. Moreover, one of our primary lets Valor’'s logging facility use the kernel's page cache
goals is for transactional and non-transactional programs$o buffer dirty pages and log pages which reduces re-
to have access to the same data through the file systedundancy, improves performance, and makes it easier to
interface. Although Amino provided binary compatibil- support transactions on top of existing file systems.

ity with existing applications, running programs through . .
ayptrace mon?toﬁ)s not as seamlegspasgwe liked. ngwe3 Design and I mplementation

ptrace monitor had to run in privileged mode to service The design of Valor prioritizes (1) a low complexity ker-
all processes, it serviced system calls inefficiently duenel design, (2) a versatile interface that makes use of
to additional memory copies and context switches, andransactions optional, and (3) performance. Our seam-
it imposed additional overhead from using signal pass{ess approach achieves low complexity by exporting just
ing to simulate a kernel system call interface for appli-a minimal set of system calls to user processes. Func-
cations [44]. Other user level approaches to providingtionality exposed by these system calls would be difficult
transactional interfaces include Berkeley DB and Stasisto implement efficiently in user-space.

. . Valor allows applications to perform file-system op-
3erke|ey D.B' . Berk(_eley DB Is a user "bff"“y that pro- erations within isolated and atomic transactions. Iso-
vides applications with an API to transactionally updateIation guarantees that file-system operations performed
key-value pairs in an on-disk B-Tree. We discuss Berke- . . : : |
i . . . . within one transaction have no impact on other pro
ley DB's relative performance in depth in Section 4. We - - i
e . cesses. Atomicity guarantees that committing a trans
benchmark BDB through Valor’s file system extensions._ . . o ]
. . X action causes all operations performed in it to be per
Relying on BDB to perform file system operations can L i
h . . formed at once, as a unit inseparable even by a sys
result in large overheads for large serial writes or large ; ;
transactions (256MiB or more). This is because BDB iStem crash. If desired, Valor can ensure a transaction
. ; L o is durable: if the transaction completes, the results are
being used to provide a file interface, which is used by

N S S guaranteed to be safe on disk. We now turn to Valor's
applications with different work-loads than applications fransactional modelwhich specifies the scope of these
that typically use a database. If the regular BDB in- P P

. . -< %uarantees and what processes must do to ensure they
terface is used, though, transaction-oblivious processe ;

; . . L are provided.
cannot interact with transactional applications, as the
formed use the file system interface directly. Transactional Model. Valor's transactional guaran-
tees extend to the individual inodes and pages of di-
rectories and regular files for reads and writes. A pro-

Tess must lock an entire file if it will read from or write

Stasis. Stasis provides applications a transactional in-
terface to a page file. Stasis requires that application

speC|fy_ their own hooks to be used by Fhe databgse % its inode. Appends and truncations modify the file
determine efficient undo and redo operations. Stasis Sups'ize, so they also must lock the entire file. To overwrite

p_orts nested transactions [7] alongside write-ahead IOg'aata in a file, only the affected pages need to be locked.
ging and LSN-Free pages [34] to improve performanceWhen performing directory operations like file creation

Stasis does not require applications to use a B-Tree og S T .
: . X nd unlinking, only the containing directory needs to be
disk and exposes the page file directly. Like BDB, Sta'Iocked. When renaming a directory, processes must also

sis requires applications to be coded against its AP tOrecursively lock all of the directory’s descendants. This

read and write transactionally. Like BDB, Stasis does; . accepted way to handle concurrent lockers dur-

not provide a transactional interface on top of an eX_'St'ing a directory rename [27]. More sophisticated lock-
ing file system which already contains data. Also like

. i i ing schemes (e.g., intent locks [3]) that improve per-
BDB, Stasis implements its own private, yet redl"nd"’lmformance and relieve contention among concurrent pro-

page cache which is less efficient than cooperating Wiﬂ]:esses are beyond the scope of this paper

the kernel's page cache (see Section 4). We now turn to the concepts underlying Valor’s archi-

Reflectmg on our experience Wlth. KBDBFS ar_1d tecture. These concepts are implemented as components
Amino, we have come to the conclusion that adaptlngOf Valor's system: they are illustrated in Figure 1.

the file system interface to support ACID transactions

does indeed have value and that the two most valuil. Logging Device. In order to guarantee that a se-
able properties that the database provided to us werquence of modifications to the file system completes as
the logging and the locking infrastructure. Therefore,a unit, Valor must be able to undo partial changes left
in Valor we provide two key kernel facilities: (1) ex- behind by a transaction that was interrupted by either a
tended mandatory locking and (2) simple write order-system crash or a process crash. This means that Valor
ing. Extended mandatory locking lets Valor provide the must store some amount of auxiliary data, because an



4. Interception Mechanism. New applications can
use special APIs to access the transaction functionality
that Valor provides; however, pre-existing applications
must be made to run correctly if they are executed in-
side a transaction. This could occur if, for example, a
Valor-aware application starts a transaction and launches
a standard shell utility. To do this, Valor modifies the
standard POSIX system calls used by unmodified appli-
cations to perform the locking necessary for proper iso-
lation. Section 3.3 describes our modifications.

The above four Valor components provide the neces-
* sary infrastructure for the seven Valor system calls. Pro-

cesses that desire transactional semantics must use the

Valor system calls to log their writes and acquire locks
on files. We now discuss the Valor system calls and then
provide a short example to illustrate Valor's basic oper-
ation.

write

Interception Mech. (4)

Log Append

Logging Device (1) ] VFS: E.M. Locking (3)

Page Cache

Simple Write Ordering (2)

v v

Disk

Log Partition Valor's Seven System Calls. When an application

uses the following seven system calls correctly (e.g.,
calling the appropriate system call before writing to a

unmodified file system can only be relied upon to atomi-page)’ \_/alor prpv_|des that app_hcatmn fully transacub_na
semantics. This is true even if other user-level applica-

cally update a single sector and does not provide a mecq.— .
. - : ions do not use these system calls or use them incor-
anism for determining the state before an incomplete

write. Common mechanisms for storing this auxiliary rectly.
data include dog [7] and WAFL [13]. Valor does not Log Begi n begins a transaction. This must be called
modify the existing file system, so it uses a log stored on before all other operations within the transaction.
a separate partition called theg partition. Log Append logs anundo-redo record which stores
the information allowing a subsequent operation to
be reversed. This must be called before every oper-
ation within the transaction. See Section 3.1.
Resol ve ends a transaction. In case of an error, a
process may voluntarilgbort a transaction, which
undoes partial changes made during that transac-
tion. This operation is called aabort. Conversely,
if a process wants to end the transaction and en-
sure that changes made during a transaction are all
done as an atomic unit, it casommitthe transac-
tion. Whether dog resolve  is a commit or an
abort depends on a flag that is passed in.
Transacti on Sync flushes a transaction to disk. A
process may calfransaction Sync  to ensure

Figure 1: Valor Architecture

2. Simple Write Ordering. Valor relies on the fact
that even if a write to the file system fails to complete,
the auxiliary information has already been written to the
log. Valor can use that information to undo the partial
write. In short, Valor needs to have a way to ensure that
writes to the log partition occur before writes to other
file systems. This requirement is a special caserite
ordering, in which the page cache can control the order
in which its writes reach the disk. We discuss our im-
plementation in Section 3.1, which we caiinple write
orderingboth because it is a special case and because it
operates specifically at page granularity.

3. Extended Mandatory Locking. Isolation gives a

process the illusion that there are no other concurrently
executing processes accessing the same files, directories,
or inodes. Transactional processes can implement this
by first acquiring a lock before reading or writing to a
page in a file, a file’s inode, or a directory. However,
an OS with a POSIX interface and pre-existing appli-
cations must support processes that do not use transac-

that changes made in its committed transactions
are on disk and will never be undone. This is the
only sanctioned way to achieve durability in Valor.
ODIRECT, O.SYNG andfsync [9] have no useful
effect within a transaction for the same reason that
nested transactions cannot be durable: the parent
transaction has yet to commit [7].

tions. Thesdransaction-obliviougprocesses do not ac- Lock, Lock Permnit,Lock Policy Our Lock sys-

quire locks before reading from or writing to files or
directories. Extended mandatory lockingnsures that

all processes acquire locks before accessing these re-
sources. See Section 3.2.

tem call locks a page range in a file, an entire di-
rectory, or an entire file with a shared or exclusive
lock. This is implemented as a modifiéchtl

These routines provide Valor's support for transac-



tional isolation.Lock Permit andLock Policy memory pressure. If the system crashes in this scenario,
are required for security and inter-process transacValor must be able to rollback these flushes during re-
tions, respectively. See Section 3.2. covery to fulfill its atomicity guarantee. Valor writes
undo records describing the original state of each af-
Cooperating with the Kernel Page Cache. As illus-  fected page to the log when flushing in this way. A page
trated in Figure 1, the kernel's page cache is central tacache that supports flushing dirty pages from uncommit-
Valor, and one of Valor's key contributions is its close ted transactions is known asSiealcache; XFS [41],
cooperation with the page cache. In systems that d@FS [40], and other journaling file systems are No-Steal,
not support transactions, theite(2)  system call ini-  which limits their transaction size [42] (see Section 2).
tiates an asynchronous write which is later flushed tovalor’s solution is a variant of the ARIES transaction re-
disk by the kernel page cache’s dirty-page write-backcovery algorithm [20].
thread. In Linux, this thread is callegodflush  [1].
If an application requires durability in this scenario,
it must explicitly callfsync(2) . Omitting durability
by default is an important optimization which allows

pdflush  to economize on disk seeks by grouping writesan Example. Figure 2 illustrates Valor's writeback
together. Databases, despite introducing transaction S@nechanism. A procesh; initially calls theLock sys-
mantics, achieve similar economies thrpugb-Force tem call to acquire access to two data pages in a file,
page caches. These_ caches vynte auxiliary log recordgen calls the.og Append system call on them, gener-
only when a transaction commits, and then only as ongting the two 'Ls in the figure, and then cailsite(2)

large serial write, and use threads similarpitflush to update the data contained in the pages, generating the
to flush data pages asynchronously [7]. Valor is alsotwo 'P’s in the figure. Finally, it commits the transac-
No-Force, but can further reduce the cost of commit-tion and quits. The processes did not adhsaction

ting a transaction by writing nothing—neither log pagessync . On the left hand side, the figure shows the state of
nor data pages—untfidflush ~ activates. Valor's sim-  the system beforé’, commits the transaction; because
ple write ordering scheme facilitates this optimization by of \alor's non-durable No-Force logging scheme, data
guaranteeing that writes to the log partition always oc-pages and corresponding undo/redo log entries both re-
cur before the corresponding data writes. In the absencgide in the page cache. On the right hand side, the pro-
of simple write ordering, Valor would be forced to im- cess has committed and exited; simple write ordering
plement a redundant page cache, as many other systersgsures that the log entries are safely resident on disk,

do. Valor implements simple write ordering in terms of and the data pages will be written out pyflush ~ as
existing Linuxfsync semantics which returns when the needed.

writes are scheduled, but before they hit the disk plat- sefore p, exits After P, exits
ter. This introduces a short race where applications run- e <P. :Exited>
ning on top of Valor and the other systems we evaluated , g
(Berkeley DB, Stasis, and ext3) could crash unrecover- ~°""*" e
ably. Unfortunately, this is the standaigync imple- 4l USER
mentation and impacts other systems such as MySQL, KERNEL
Berkeley DB, and Stasis [45] which rely @sync or its Logging Device (1) [ ves: . tocking @ | | [ tosaing Device ) urs: e - tocking @
like (i.e.,fdatasync , O.SYNG and direct-10). OE e IO onge Cache

One complexity introduced by this scheme is that a *
transaction may be completely written to the log, and re- =
ported as durable and complete, but its data pages may | smewieomma | | r B |
not yet all be written to disk. If the system crashes in |I|+ +
this scenario, Valor must be able to complete the disk | - | | - | Em_j m

. . oy e . Log Partition Disk Log Partition Disk
writes during recovery to fulfill its durability guarantee.

Similar to database systems that also perform this opti-

mization, Valor includes sufficient information in the log Figure 2: Valor Example
entries toredothe writes, allowing the transaction to be  \we now discuss each of Valor's four architectural
completed during recovery. components in detail. Section 3.1 discusses the log-

Another complexity is that Valor supports large trans- ging, simple write ordering, and recovery components of
actions that may not fit entirely in memory. This meansValor. Section 3.2 discusses Valor's extended mandatory
that some memory pages that were dirtied during an infocking mechanism, and Section 3.3 explains Valor’s in-
complete transaction may be flushed to disk to relieveerception mechanism.



3.1 ThelLogging Interface Life Cycle of a Transaction. When a process calls

Log Begin , it gets a transaction ID by allocating a new
Valor maintains two logs.  Ageneral-purpose 10g |og record, called @ommit record Valor then creates an
records information on directory operations, like addingjn-memory commit set and moves it onto the inflight list.
and removing entries from a directory, and inode op-pyring the lifetime of the transaction, whenever the pro-
erations, like appends or truncations. pRge-value cess calliog Append, Valor adds new log records to
log records modifications to individual pages in regular the commit set. When the process callgy Resolve
files [2]. Before writing to a page in a regular filditty-  valor moves its commit set to the landed list and marks
ing the page), and before adding or removing a name a5 committecor aborteddepending on the flag passed
from a directory, the process must catlg Append t0  in by the process. If the transaction is committed, Valor
prepare the associated undo-redo record. We refer tQyites amagic valueto the commit record allocated dur-
this undo-redo record aslag record Since the bulk ing Log Begin . If the system crashes and the log is
of file system 1/O is from dirtying pages and not direc- complete, the value of this log record dictates whether
tory operations, we have only implemented Valor's pagethe transaction should be recovered or aborted.

log for evaluation. Valor manages its logs by keeping One thing Valor must be careful about is the case in

track of the state of each_transacuon3 and tracking Wh'crbvhich a log record is flushed to disk Ipgflush | its
log records belong to which transactions.

corresponding file page is updated with a new value, and
i the file system containing that file page writes it to disk,
I . thus violating write ordering. To resolve this issue, Valor
I Radix Tree keeps aflag in each page in the kernel’s page cache. This
| flag can readvailableor unavailable between the time
| |_Page Cache Valor flushes the page’s log record to the log and the
o }mge —— I time the file system writes the dirty page back to disk,
|
|
|
|
|
|
|

General Purpose Log
Page Value Log

o Inflight, Landed, Freeing Lists it j5 marked as unavailable, and processes which try to
call Log Append to add new log records wait until it
becomes available, thus preserving our simple write or-
dering constraint. For hot file-system pages (e.g., those
containing global counters), this could result in bursty
write behavior. One possible remedy is to borrow Ext3’s
solution: when writing to amnavailablepage, Valor can
A - create a copy. The original copy remains read-only and
State File DISKIMEMORY is freed aftee)fthe flush gc:]:ompletg)g. The new copy isyused
Figure 3: Valor Log Layout for new reads and writes and is not flushed until the next
pdflush , maintaining the simple write ordering.

3.1.1 In-Memory Data Structures We modifiedpbdflush  to maintain Valor’s in-memory
data structures and to obey simple write ordering by
There are three states a transaction can be in during thushing the log's super block before all other super
course of its life: (1)in-flight, in which the applica- plocks. Wherpdflush ~ runs, it (1) moves commit sets
tion has calledog Begin but has not yet calletlog  which have been written back to disk to the freeing list,
Resolve ; (2)landed in which the application has called (2) marks all page log records in the inflight and landed
Log Resolve butthe transaction is not yet safe to deal- lists as unavailable, (3) atomically transitions the disk
locate; and (3jreeing in which the transaction is ready state to commit landed transactions to disk, and (4) it-
to be deallocated. Landed is distinct from freeing be-erates through the freeing list to deallocate transactions
cause if an application does not require durabilityy  which have been safely written back to disk.
Resolve causes neither the log nor the data from the
transaction to be flushed to disk (see abdvepperat-  Soft vs. Hard Deallocations. Valor deallocates log
ing with the Kernel Page Cache records in two situations: (1) whenLag Append fails
Valor tracks a transaction by allocatingcammit set  to allocate a new log record, and (2) whedflush
for that transaction. A commit set consists of a uniqueruns. Soft deallocatiorwaits for pdfiush  to naturally
transaction IDand a list of log records. As depicted Write back pages and moves a commit set to the freeing
in Figure 3, Valor maintains separate lists of in-flight, list to be deallocated once all of its log records have had
landed, and freeing commit sets. It also uses a radix tretheir changes written backiard deallocatiorexplicitly
to track free on-disk log records. flushes a landed commit set’s dirty pages and directory
modifications so it can immediately deallocate it.

Record Maps

3
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3.1.2 On-Disk Data Structures pdflush  performs an atomic transition of Valor's on-

Figure 3 shows the page-value log and general-purpos%'Sk_Sta_te to reflect the current in-memory sta_te, thus
log. Valor maintains twaecord mapfiles to act as su- making it no longer stale._ To _represent the previous and
perblocks for the log files, and to store which log records"ext state of Valor's on-disk files, we havesbleand
belong to which transactions. One of these record magnstablerecord map for each log file. The stable record
files corresponds to the general-purpose log, and th&'@Ps Serve as an authoritative source for recovery in the
other to the page-value log. For a given log, there aréave_nt of a crash. The unstat_)le record maps are updated
exactly the same number of entries in the record magluring Valor's normal operation, but are subject to cor-

as there are log records in the log. The five fields of a™UPtion in the event of crashes. The purpose of Valor's
record map entry are: LDST is to make the unstable record map consistent, and

T ion 1D Th . , his | then safely and atomically relabel the stable record maps
ransaction e fransaction (commit sef) this log as unstable and vice versa. This is similar to the scheme

record belongs to.
. . employed by LFS [32, 37].
Log Sequence Number (L SN) Indicates when this log The core atomic operation of the LDST is a pointer

record was allocated. . . : P
nade noc of e e whose page s mcifed, | UP0SE I elordneetne e fle T fle o
netid Serial number of the device the inode resides on.P°' ne pal ; P IS cu y :

- Because it is sector-aligned and less than one sector in
offset Offset of the page that was modified. . . S )
o size, a write to it is atomic. All other steps ensure that
General-purpose log records contain directory paththe record maps are accurate at the point in time where

names for recovery of original directory listings in case the pointer is updated. The steps are as follows:
of a crash. Page value log records contain a specially-

encoded page to store both the undo and the redo record - Quiesce (block) all readers and writers to any on-
The state file is part of the mechanism employed by _ diskfile inthe Valor partition.

Valor to ensure atomicity. It is described in Section 3.1.3 2+ Flush the inodes of the page-value and general-
along with Valor's atomic flushing procedure. purpose log files. This flushes all new log records
to disk. Log records can only have been added, so a

Transition Value Logging. Although the undo-redo crash at this point has no effect as the stable records
record of an update to a page could be stored as the map does not point to any of the new entries.

value of the page before the update and the value af- 3. Flysh the inodes of the unstable page-value and
ter, Valor instead makes a reasonable optimization in  general-purpose record map files.

which it stores only the XOR of the value of the page 4. \vrite the names of the newly stable record maps to

before and after the update. This is callettansition the state file.

page Transition pages can be applied to either recover 5. Flysh the inode of the state file. The up-to-date
or abort the on-disk image. A pitfall of this technique record map is now stable, and Valor now recovers
is that idempotency is lost [7]; Valor avoids this prob- from it in case of a system crash.

lem by recording the location and value of the first bit 6. Copy the contents of the stable (previously unsta-
of each sector in the log record that differed between  pje) record map over the contents of the unstable
the undo and redo image. Although log records are al-  (previously stable) record map, bringing it up to
ways page-sized, this information must be stored ona  gate.
per-sector basis as the disk may only write part of the 7 un-quiesce (unblock) readers and writers.
page. (Because meta-data is stored in a separate mapg. Free all freeing log records.
transition pages in the log are all sector-aligned.) If a
transaction updates the same page multiple times, ValoAtomicity. The atomicity of transactions in Valor fol-
forces eachog Append call to wait on the Page Avail- lows from two important constraints which Valor en-
able flag which is set by the simple write ordering com- sures that the OS obeys: (1) that writes to the log par-
ponent operating withipdflush . If it does not have to  tition and data partitions obey simple write ordering and
wait, the call may update the log record’s page directly,(2) that the LDST is atomic. At mount time, Valor runs
incurring no 1/0. However, if the call must wait, then a recovery (Section 3.1.4) to ensure that the log is ready
new log record must be made to ensure recoverability. and fully describes the on-disk system state when it is
. . finished mounting. Thereafter, all proper transactional
3.1.3 LDST: Log Device State Transition writes are precedged hyg Append CZ”SI.DNO writes go
Valor's in-memory data structures are a reflection ofto disk untilpdflush is called or Valor'sTransaction
Valor’'s on-disk state; however, as commit sets and logsync is called. Simple write ordering ensures that in
records are added, Valor's on-disk state becomes staleoth cases, the log records are written before the in-
until the next timepdflush runs. We ensure that place updates, so no update can reach the disk unless its



corresponding log record has already been written. Logwith respect to exclusive locks and well-formed with re-
records themselves are written atomically and safely bespect to writes. Thus Valor provides degree 1 isolation.
cause writes to the log’s backing store are only maddn this environment, then, by the degrees of isolation the-
during an LDST. Since an LDST is atomic, the state oforem [7], transactional processes that obey higher de-
the entire system advances forward atomically as well. grees of isolation can have transactions with repeatable
. reads (degree 3) and no lost updates (degree 2).

3.1.4 Performing Recovery Valor supports inter-process transactions by imple-
System Crash Recovery. During themount opera-  menting inter-process locking. Processes may specify
tion, the logging device checks to see if there are any(1) if their locks can be recursively acquired by their
outstanding log records and, if so, runs recovery. Dur-children, and (2) if a child’s locks are released or instead
ing umount, the Logging Device flushes all commit- given to its parent when the child exits. These specifica-
ted transactions to disk and aborts all remaining transtions are propagated to the Extended Mandatory Lock-
actions. Valor can perform recovery easily by readinging system with the.ock Policy ~ system call.

the state file to determine which record map for each log valor prevents misuse of locks by allowing a pro-
is stable, and reconstructing the commit sets from thesgess to acquire a lock only under one of two circum-
record maps. A log sequence number (LSN) stored instances: (1) if the process has permission to acquire a
the record map allows Valor to read in reverse order thelock on the file according to the LPerm of the file, or
events captured within the log and play them forward or(2) if the process has read access or write access, de-
back based on whether the write needs to be completegending on the type of the lock. Only the owner of a
to satisfy durability or rolled back to satisfy atomicity. file can change the LPerm, but changes to the LPerm
Recovery finds all record map entries and makes a comeake effect regardless of transactions’ isolation seman-
mit set for each of them which is by default marked astics. Deadlock is prevented using a deadlock-detection
aborted. While traversing through record map entries ifaigorithm. If a lock would create a circular dependency,
it finds a record map entry with a magic value (written then an error is returned. Transaction-aware processes
asynchronously duringog Resolve ) indicating that  can then recover gracefully. Transaction-oblivious pro-
this transaction was committed, it marks that set comtesses should check the status of the failed system call
mitted. Finally all commit sets are deallocated and anand return an error so that they can be aborted. This
LDST is performed. The system can come on line. works well in practice. We have successfully booted,
Process Crash Recovery. Recovery handles the case used, gnd shutdown a previous ver_sion of the Valor sys-
of a system crash, something handled by all journalingem With extended mandatory locking and the standard
file systems. However, Valor also supports user-proces§9acy programs. A related issue is the locking of fre-
transactions and, by extension, user-process recover?.ue”tly accessed file-system objects or pages. The de-
When a process calls thie_exit process clean-up rou- au_lt Valor behavior is to prowd_e degree 1 |solz_;1t|on,
tine in the kernel, theitask _struct  is checked to see Which prevents another transaction from accessing the
if a transaction was in-flight. If so, then Valor moves the P2g€ while another transaction is writing to it. - For
commit set for the transaction onto the landed list andransaction-oblivious processes, because each individ-

marks the commit set as aborted. ual system call is treated as a transaction, these locks
_ _ are short lived. For transaction-aware processes, an ap-
3.2 Ensuring Isolation propriate level of isolation can be chosen (e.g., degree

Extended mandatory lockirig a derivation of manda- 2—no lost updates) to maximize concurrency and still
tory locking, a system already present in Linux and So-Provide the required isolation properties.

laris [10, 18]. Mandatory locks are shared for reads bu% 3 Application I nterception

exclusive for writes and must be acquired by all pro-~"

cesses that read from or write to a file. Valor addsValor supports applications that are aware of trans-
these additional features: (1) a locking permission bitactions but need to invoke subprocesses that are not
for owner, group, and all (LPerm), (2) a lock policy sys- transaction-aware within a transaction. Such a subpro-
tem call for specifying how locks are distributed upon cess is wrapped in a transaction that begins when it
exit , and (3) the ability to lock a directory (and the re- first performs a file operation and ends when it exits.
guirement to acquire this lock for directory operations). This is useful for a transactional process that forks sub-
System calls performed by non-transactional processegrocesses (e.ggrep ) to do work within a transaction.
that write to a file, inode, or directory object acquire During system calls, Valor checks a flag in the process
the appropriate lock before performing the operation ando determine whether to behave transactionally or not.
then release the lock upon returning from the call. Non-In particular, when a processfigk ed, it can specify if
transactional system calls are consequently two-phasés child is transaction-oblivious. If so, the child has its



Transaction ID set to that of the parent and its in-flight BDB were set to 128MiB. Since Valor prioritizes non-
state set to Oblivious. When the process performs anglurable transactions, we configured Stasis and BDB to
system call that constitutes a read or a write on a filealso use non-durable transactions. This configuration
inode, or directory object, the in-flight state is checked,required modifying the source code of Stasis to open
and an appropriateog Append call is made with the its log withoutO.SYNCmode. Similarly, we configured
Transaction ID of the process. BDB’s environment withDBTXNWRITENOSYNCThe
4 Evaluation ext3 file sys_tem performs writes asy_nc_hronously by de-
fault. For file-system workloads it is important to be
Valor provides atomicity, isolation, and durability, but able to perform efficient asynchronous serial writes, so
these properties come at a cost: writes between the logon-durable transactions performing asynchronous se-
device and other disks must be ordered, transactionaial writes were the focus during our benchmarking.
writes incur additional reads and writes, and in-memoryBDB indexed each page in the file by its page offset
data structures must be maintained. Additionally, Valorand file ID (an identifier similar to an inode number).
is designed to provide these features while only requir\ne used the B-Tree access method as this is the suitable
ing minor changes to a standard kernel's design. Inchoice for a large file system [44].
this section we evaluate the performance of our Valor
design and also compare it to stasis and BDB. Sec4.2 Mock ARIES L ower Bound

tion 4.1 describes our experimental se'Fup. _Sectlon 4'%igure 4 compares Valor's performance against a mock
analyzes a benchmark based on an idealized ARIERR|Es transaction system to see how close Valor comes
transaction logger to derive a lower bound on overhead,; ihe ideal performance for its chosen logging sys-

Section 4.3 evaluates Valor's performan(,:e for a serialem e configured a separate logging block device with
file overwrite. Section 4.4 evaluate Valor's transaction ., ,in order to avoid overhead from unnecessary jour-

throughput. Section 4.5 analyzes Valor’'s concurrent per’naling in the file system. We configured the data block

formance. Finally, Section 4.6 measure Valor's recoveryyeyice withext3 , since journaled file systems are in
time. All benchmarks test scalability. common use for file storage. We benchmarked a 2GiB
4.1 Experimental Setup file overwrite under three mock systems. MT-ow-noread

performed the overwrite by writing zeros to tleet2

We used four identical machines, each with a 2.8GHzjg\jce to simulate logging, and then writing zeros to the
Xeon CPU and 1GB of RAM for benchmarking. Each 4,43 gevice to simulate write back of dirty pages. MT-
machine was equipped with six Maxtor DiamondMax 10 giffers from MT-ow-noread in that it copies a pre-

7,200 RPM 250GB SATA disks and ran CentOS 5.2 withgyisting 2GiB data file to the log to simulate time spent
the latest updates as of September 6, 2008. To ensure@aing in the before image. MT-ow-finite differs from
cold cach_e anq an equivalent block layout on disk, Weihe other mock systems in that it uses a 128MiB log,
ran each iteration of the relevant benchmark on a newlytq cing it to break its operation into a series of 128MiB
formatted file system with as few services running as;qpies into the log file and writes to the data file. A trans-
possible. We ran all te;ts at least five times and comzion manager based on the ARIES design must do at
puted 95% confidence intervals for the mean elapsedgast as much I1/0 as MT-ow-finite. Valor's overhead on
system, user, and wait times using the Studentss- 14 of MT-ow-finite is 35%. Stasis’s is 104%. The cost
tribution. In each case, unless otherwise noted, the half¢ \T-ow reading the before images as measured by the

Wid.thg of '_[he interval§ were less than 5% of the_ mean o\ erhead of MT-ow on MT-ow-noread is only 2%. The
Wait time is elapsed time less system and user time anglost of MT-ow-finite restricting itself to a finite log is

mostly measures time performing I/O, though it can alsoy o, que to required additional seeking. Stasis’s over-

be affected by process scheduling. We benchmarkeflg s is more than Valor's overhead due to maintaining a
Valor on the modified Valor kernel, and all other systems o yundant page cache in user space.

on a stable unmodified 2.6.25 Linux kernel.

Comparison to Berkeley DB and Stasis. The most 4.3 Serial Overwrite

similar technologies to Valor are Stasis and Berkeleyln this benchmark we measure the time it takes for a
DB (BDB): two user level logging libraries that provide process to transactionally overwrite an existing file. File
transactional semantics on top of a page store for trangransfers are an important workload for a file system.
actions with atomicity and isolation and with or with- See Figure 5. Providing transactional protection to large
out durability. Valor, Stasis, and BDB were all config- file overwrites demonstrates Valor's ability to scale with

ured to store their logs on a separate disk from theidarger workloads and handle typical file system opera-
data, a standard configuration for systems with mordions. Since there is data on the disk already, all sys-
than one disk [7]. The logs used by Valor, Stasis, andems butext3 must log the contents of the page before
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Figure 6: Run times for transactions, increasing granuiyari

1024

tions, and indicates the overhead of beginning and com-
mitting a transaction on a write. We measured BDB,
Valor, Stasis, an@éxt3 . Forext3 we simply used the

512
256

ii 128 | native page size on the disk. See Figure 6. The through-
8 put benchmark is simply the overwrite benchmark from

g 4T Section 4.3, but we vary the size of the transaction rather
o9y than the amount of data to write. We see the typical
g 16 - result that the non-transactional systeaat ) is un-

w gl affected: transactional systems converge on a constant

factor of the non-transactional system'’s performance as
‘ ‘ ‘ the overhead of beginning and committing a transaction
256 512 1024 2048 approaches zero. BDB converges on a factor of 23 of
Append Size in MB ext3 's elapsed time, Stasis converges on a factor of 4.2,
Figure 5: Async serial overwrite of files of varying sizes ~ and Valor converges on a factor of 2.9. It is interest-
e . ing that Valor has an overhead of 76% with respect to
overwriting it. The transactional systems use a trans—..> . ; .
. . . : Stasis, and Stasis has an overhead of 25% with respect
action size of 16 pages. The primary observation from

. . . to BDB for single page transactions. BDB is oriented
these results is that each system scales linearly with re- . ;

: . oward small transactions making updates to a B-Tree,
spect to the amount of data it must write. Valor runs

2.75 times longer thaext3 , spending the majority of not serial 1/0. As the granularity decreases, Stasis and

that overhead writing Log Records to the Log Device.BDB converge to less efficient constant factors of the

. . non-transactionaxt3 's performance than what Valor
Stasis runs 1.75 times slower than Valor. It spends ad- . . )

. . . . . converges to. This would imply that Valor's overhead for
ditional time allocating pages in user space for its own

: - . .. Log Append is lower than Stasis’s since Valor operates
page cache, and doing additional memory copies for It%rom within the kernel and eliminates the need for a re-
writes to both its log and its store file. For the 512 MiB

over write of Valor and Stasis, and the 256 MiB over gﬁgggmc%i%eef?:; Zogo?qr;?a%?gfgct:sgzgc?n:rE)[r)_B has
write of Stasis the half-widths were 11%, 7%, and 23% y 9 P

. ance starting at 1-page transactions: for transactions

respectively. The asynchronous nature of the benchmarF] S
- : ess than one page in size, BDB began to perform worse.

caused Valor and Stasis’ page cache to introduce fluctu-
ationsinan othenmse_stable sgrlal write. BDB s_o’n-dlsk4.5 Concurrent Writers
B-Tree format, which is very different from Stasis’s and
Valor's simple page-based layout, makes it difficult to Concurrency is an important measure of how a file inter-
perform well in this I/0 intensive workload that has little face can handle seeking and less memory while writing.
need forlog(n) B-Tree lookups. Because of this Valor One application of Valor would be to grant atomicity to

4 +

2

runs 8.22 times the speed of BDB. package managers which may unpack large packages in
. lari parallel. To measure concurrency we ran varying num-
4.4 Transaction Granularity bers of processes that would each serially overwrite an

We measured the rate for processing small durable transndependent file concurrently. Each process wrote 1GiB
actions with varying transaction sizes. This benchmarkof data to its own file, and we ran the benchmark with 2,
establishes Valor’s ability to handle many small transac+4, 8, and 16 processes running concurrently. Figure 7 il-

11



Ext3 —— Wait ——

| Valor —— User ===y
8500 BDB —— System m—
Stasis —=—

3000 -

2500 -

2000 -

1500

Elapsed Time (sec)
Elapsed Time (sec)

1000

500

2 2
= | %, s,

Q,
2 4 8 16 ¢ S
Number of Processes

s,
780

% 3
=3 . S,
Se

3
(2
S e

Figure 7: Execution times for multiple concurrent processe Figure 8: Time spent recovering from a crash for varying
accessing different files amounts of uncommitted data and varying number of processes

lustrates the results of our benchmark. For low numbersvhen they crashed, and their writes had to be rolled back
of processes (2, 4, and 8) BDB had half-widths of 35%,by recovery. In the second trial, three processes were
6%, and %5 because of the high variance introduced bwppending to separate files. Process crash was simu-
BDB’s user space page cache. Stasis and BDB run dhted by simply callingxit(2)  and not committing the
2.7 and 7.5 times the elapsed timeeaf3 . For the 2, transaction. Valor first reads the Record Map to reconsti-
4, 8, and 16 process cases, Valor’s elapsed time is 3.Qute the in-memory state at the time of crash, then plays
2.6, 2.4, and 2.3 times that ext3 . What is notable is each record forward or back in reverse Log Sequence
that these times converge on lower factorexf3 for ~ Number (LSN) order. Figure 8 illustrates our recovery
high numbers of concurrent writers. The transactionalresults. Labep/s-rec  in the figure shows elapsed time
systems must perform a serial write to a log followed bytaken by recovery to recover 8MiB of data in the case of
a random seek and a write for each process. BDB an@ process crash. We see that although the amount of time
Stasis must maintain their page caches, and BDB musipent recovering is proportional to the amount of uncom-
maintain B-Tree structures on disk and in memory. Formitted data for both the 2 and 3 process case, that recov-
small numbers of processes, the additional I/O of writ-ering 3 processes takes more time than for 2 because of
ing to Valor’s log widens the gap between transactionaladditional seeking back and forth between pages on disk
systems an@xt3 , but as the number of processes andassociated with log records for 3 uncommitted transac-
therefore the number of files being written to at once in-tions instead of 2. 2/32-rec is 2.31 times slower than
creases, the rate of seeks overtakes the cost of an extpdl6-rec and 2/16-rec is 1.46 times slower than 2/8-rec
log serial write for each data write, and maintenance ofdue to varying size of recoverable data. Similarly, 3/32-
on-disk or in-memory structures for BDB and Stasis.  rec is 2.04 times slower than 3/16-rec and 3/16-recis 1.5
times slower than 3/8-rec. Keeping the amount of recov-
46 Recovery erable data same we see that 3 processes have 44%, 63%,
) ) L ) and 60% overhead compared to 2 process with recover-
Ong of the main goals of a journaling file sygte_m. IS 10 ahle data of 8MiB, 16MiB, 32MiB, respectively. In the
avoid a lengthyfsck on boot [11]. Therefore itis im- ot case Valor recovery can become a random read of
portant to ensure Valor can recover from a crash in a>g\ip of jog data, followed by another random read of

finite amount of time with respect to the disk. Valor's ;,a\ri5 o on-disk data. and finally 128MiB of random
ability to recover a file after a crash is based on its IOg'writes to roll back on-diék data

ging an equivalent amount of data during operation. The lor d loaging f d-onl .
amount of total data that Valor must recover cannot ex- valor does no ok(;:]glng O”ﬁa -gnytranszgﬂor;]s ((f-::l.g.,
ceed the length of Valor's log, which was 128 MiB in all 9étdents , read ) because they do not modify the file
our benchmarks. Valor's recovery process consists Otsystem. Valor only acquires a read lock on the pages be-

(1) reading a page from the log, (2) reading the original'ng read, and, t_)ecause it calls directly dov_vn into the file
page on disk, (3) determining whether to roll forward system to service the read request, there is no overhead.
or back, and (4) writing to the original page if neces- Systems which use an additional layer of software to
sary. To see how long Valor took to recover for a typical translate file system operations into database operations
amount of uncommitted data, we tested the recovery ond back again introduce additional overhead. This is
8MiB, 16MiB and 32MiB of uncommitted data. In the why Valor achieves good performance with respect to
first trial, two processes were appending to separate filesther database-based user level file system implemen-
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tations that provide transactional semantics. These alrisms across multiple devices (e.g., via a logical volume
ternative APIs can perform well in practice, but only if manager or multiple mounts) can retain atomicity. We
applications use their interface, and constrain their work believe we could avoid hard drive cache flushes [23] us-
loads to reads and writes that perform well in a standardng tagged 1/O support for SATA drives and export this
database rather than a file system. Our system does netrite ordering primitive to layers higher than the block
have these restrictions. device and file system implementation. We also are in-
5 Conclusions _terested_in analyzin_g the probability of failure whe_n us-
ing varying semantics fofsync as well as analyzing

Applications can benefit greatly from having a POSIX- the associated performance trade-offs.
compliant transactional API that minimizes the number K led hank th )
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