
Enabling Transactional File Access via Lightweight Kernel Extensions
Appears in the Proceedings of the 7th USENIX Conference on File and Storage Technologies (FAST ’09)

Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, andErez Zadok

Stony Brook University

Charles P. Wright

IBM T.J. Watson Research Center

Abstract

Transactions offer a powerful data-access method
used in many databases today trough a specialized query
API. User applications, however, use a different file-
access API (POSIX) which does not offer transactional
guarantees. Applications using transactions can become
simpler, smaller, easier to develop and maintain, more
reliable, and more secure. We explored several tech-
niques how to provide transactional file access with min-
imal impact on existing programs. Our first prototype
was a standalone kernel component within the Linux
kernel, but it complicated the kernel considerably and
duplicated some of Linux’s existing facilities. Our sec-
ond prototype was all in user level, and while it was
easier to develop, it suffered from high overheads. In
this paper we describe our latest prototype and the evo-
lution that led to it. We implemented a transactional file
API inside the Linux kernel which integrates easily and
seamlessly with existing kernel facilities. This design is
easier to maintain, simpler to integrate into existing OSs,
and efficient. We evaluated our prototype and other sys-
tems under a variety of workloads. We demonstrate that
our prototype’s performance is better than comparable
systems and comes close to the theoretical lower bound
for a log-based transaction manager.

1 Introduction
In the past, providing a transactional interface to files
typically required developers to choose from two un-
desirable options: (1) modify complex file system code
in the kernel or (2) provide a user-level solution which
incurs unnecessary overheads. Previous in-kernel de-
signs either had the luxury of designing around trans-
actions from the beginning [33] or limited themselves
to supporting only one primary file system [43]. Previ-
ous user-level approaches were implemented as libraries
(e.g., Berkeley DB [39], and Stasis [34]) and did not sup-
port interaction through the VFS [15] with other non-
transactional processes. These libraries also introduced
a redundant page cache and provided no support to non-
transactional processes. This paper presents the design
and evaluation of a transactional file interface that re-
quires modifications to neither existing file systems nor
applications, yet guarantees atomicity and isolation for
standard file accesses using the kernel’s own page cache.

Transactions require satisfaction of the four ACID
properties: Atomicity, Consistency, Isolation, and Dura-
bility. Enforcing these properties appears to require
many OS changes, including a unified cache man-
ager [12] and support for logging and recovery. Despite
the complexity of supporting ACID semantics on file
operations [30], Microsoft [43] and others [4, 44] have
shown significant interest in transactional file systems.
Their interest is not surprising: developers are constantly
reimplementing file cleanup and ad-hoc locking mecha-
nisms which are unnecessary in a transactional file sys-
tem. A transactional file system does not eliminate the
need for locking and recovery, but by exposing an inter-
face to specify transactional properties allows applica-
tion programmers to reuse locking, logging, and recov-
ery code. Defending against TOCTTOU (time of check
till time of use) security attacks also becomes easier [28,
29] because sensitive operations are easily isolated from
an intruder’s operations. Security and quality guaran-
tees for control files, such as configuration files, are be-
coming more important. The number of programs run-
ning on a standard system continues to grow along with
the cost of administration. In Linux, the CUPS print-
ing service, the Gnome desktop environment, and other
services all store their configurations in files that can be-
come corrupted when multiple writers access them or if
the system crashes unexpectedly. Despite the existence
of database interfaces, many programs still use configu-
ration files for their simplicity, generality, and because a
large collection of existing tools can access these simple
configuration files. For example, Gnome stores over 400
control files in a user’s home directory. A transactional
file interface is useful to all such applications.

To provide ACID guarantees, a file interface must be
able to mediate all access to the transactional file system.
This forces the designer of a transactional file system to
put a large database-like runtime environment either in
the kernel or in a kernel-like interceptor, since the ker-
nel typically services file-system system calls. This en-
vironment must employ abortable logging and recovery
mechanisms that are linked into the kernel code. VFS-
cache rollback is also required to revert an aborted trans-
action [44], its stale inodes, dentries, and other in-kernel
data structures. The situation can be simplified drasti-
cally if one abandons the requirement that the backing

1

store for file operations must be able to interact with
other transaction-oblivious processes (e.g.,grep), and
by duplicating the functionality of the page cache in
user space. This concession is often made by transac-
tional libraries such as Berkeley DB [39] and Stasis [34]:
they provide a transactional interface only to a single file
and they do not solve the complex problems of rewind-
ing the page cache and stale in-memory structures af-
ter a process aborts. Systems such as QuickSilver [33]
and TxF [43] address this trade-off between the com-
pleteness and implementation size by redesigning a spe-
cific file system around proper support for transactional
file operations. In this paper we show that such a re-
design is unnecessary, and that every file system can pro-
vide a transactional interface without requiring special-
ized modifications. We describe our system which uses
a seamless approach to provide transactional semantics
using a new dynamically loaded kernel module, and only
minor modifications to existing kernel code. Our tech-
nique keeps kernel complexity low yet still offers a full-
fledged transactional file interface without introducing
unnecessary overheads for non-transactional processes.

We call our file interfaceValor. Valor relies on im-
proved locking and write ordering semantics that we
added to the kernel. Through a kernel module, it also
provides a simple in-kernel logging subsystem opti-
mized for writing data. Valor’s kernel modifications
are small and easily separable from other kernel com-
ponents; thus introducing negligible kernel complexity.
Processes can use Valor’s logging and locking interfaces
to provide ACID transactions using seven new system
calls. Because Valor enforces locking in the kernel, it
can protect operations that a transactional process per-
forms from any other process in the system. Valor aborts
a process’s transaction if the process crashes. Valor sup-
ports large and long-living transactions. This is not pos-
sible forext3 , XFS, or any other journaling file system:
these systems can only abort the entire file system jour-
nal, and only if there is a hardware I/O error or the entire
system crashes. These systems’ transactions must al-
ways remain in RAM until they commit (see Section 2).

Another advantage of our design is that it is imple-
mented on top of an unmodified file system. This results
in negligible overheads for processes not using trans-
actions: they simply access the underlying file system,
only using the Valor kernel modifications to acquire nec-
essary locks. Using tried-and-true file systems also pro-
vides good performance compared to systems that com-
pletely replace the file system with a database. Valor
runs with a statistically indistinguishable overhead on
top ofext3 under typical loads when providing a trans-
actional interface to a number of sensitive configuration
files. Valor is designed from the beginning to run well
without durability. File system semantics accept this

as the default, offeringfsync(2) [9] as the accepted
means to block until data is safely written to disk. Valor
has an analogous function to provide durable commits.
This makes sense in a file-system setting as most opera-
tions are easily repeatable. For non-durable transactions,
Valor’s overhead on top of an idealized mock logging
implementation is only 35% (see Section 4).

The rest of this paper is organized as follows. In Sec-
tion 2 we describe previous experiences with designing
transactional systems and related work that have led us
to Valor. We detail Valor’s design in Section 3 and eval-
uate its performance in Section 4. We conclude and pro-
pose future work in Section 5.

2 Background
The most common approach for transactions on stable
storage is using a relational database, such as an SQL
server (e.g., MySQL [22]) or an embedded database li-
brary (e.g., Berkeley DB [39]); but they have also long
been a desired programming paradigm for file systems.
By providing a layer of abstraction for concurrency, er-
ror handling, and recovery, transactions enable simpler,
more robust programs. Valor’s design was informed by
two previous file systems we developed using Berkeley
DB: KBDBFS and Amino [44]. Next we discuss jour-
naling file systems’ relationship to our work, and we fol-
low with discussions on database file systems and APIs.

2.1 Beyond Journaling File Systems
Journaling file systems suffer from two draw-backs: (1)
they must store all data modified by a transaction in
RAM until the transaction commits and (2) their journals
are not designed to be accessed by user processes [16,
31, 42]. Journaling file systems store only enough in-
formation to commit a transaction already stored in the
log (redo-only record). This results in journaling file
systems being forced to contain all data for all in-flight
transactions in RAM [6, 7, 42]. For metadata transac-
tions, which are finite in size and duration, journaling
file systems are a convenient optimization. However, we
wanted to provide user processes with transactions that
could be megabytes large and run for long periods of
time. The RAM restriction of a journaling file system is
too limiting to support versatile file-based transactions.

Two primary approaches were used to provide file-
system transactions to user processes. (1)Database file
systemsprovide transactions to user processes by mak-
ing fundamental changes to the design of a standard file
system to support better logging and rollback of inodes,
dentries, and cached pages [33, 36, 43]. (2)Database
access APIsprovide transactions to user processes by
offering a user library that exposes a transactional page
file. Processes can store application data in the page file
by using library-specific API routines rather than storing

2

their data on the file system [34, 39]. Valor represents an
alternative to the above two approaches. Valor’s design
was settled after designing KBDBFS and Amino [44].
We discuss KBDBFS and Amino in their proper con-
texts in Sections 2.2 and 2.3, respectively.

2.2 Database File Systems

KBDBFS was an in-kernel file system built on a port of
the Berkeley Database [39] to the Linux kernel. It was
part of a larger project that explored uses of a relational
database within the kernel. KBDBFS utilized transac-
tions to provide file-system–level consistency, but did
not export these same semantics to user-level programs.
It became clear to us that unlocking the potential value of
a file system built on a database required exporting these
transactional semantics to user-level applications. KB-
DBFS could not easily export these semantics to user-
level applications, because as a standard kernel file sys-
tem in Linux it was bound by the VFS to cache various
objects (e.g., inodes and directory entries), all of which
ran the risk of being rolled back by the transaction. To
export transactions to user space, KBDBFS would there-
fore be required to either bypass the VFS layers that re-
quire these cached objects, or alternatively track each
transaction’s modifications to these objects. The first
approach would require major kernel modifications and
the second approach would duplicate much of the log-
ging that BDB was already providing, losing many of
the benefits provided by the database.

Our design of KBDBFS was motivated in part by a
desire to modify the existing Linux kernel as little as
possible. Another transaction system which modified
an existing OS was Seltzer’s log-structured file system,
modified to support transaction processing [37]. Seltzer
et al’s simulations of transactions embedded in the file
system showed that file system transactions can perform
as well as a DBMS in disk-bound configurations [35].
They later implemented a transaction processing (TP)
system in a log-structured file system (LFS), and com-
pared it to a user-space TP system running over LFS and
a read-optimized file system [37].

Microsoft’s TxF [19, 43] and QuickSilver’s [33]
database file systems leverage the early incorporation of
transactions support into the OS. TxF exploits the trans-
action manager which was already present in Windows.
TxF uses multiple file versions to isolate transactional
readers from transactional writers. TxF works only with
NTFS and relies on specific NTFS modifications and
how NTFS interacts with the Windows kernel. Quick-
Silver is a distributed OS developed by IBM Research
that makes use of transactional IPC [33]. QuickSilver
was designed from the ground up using a microkernel
architecture and IPC. To fully integrate transactions into
the OS, QuickSilver requires a departure from traditional

APIs and requires each OS component to provide spe-
cific rollback and commit support. We wanted to al-
low existing applications and OS components to remain
largely unmodified, and yet allow them to be augmented
with simple begin, commit, and abort calls for file sys-
tem operations. We wanted to provide transactions with-
out requiring fundamental changes to the OS, and with-
out restricting support to a particular file system, so that
applications can use the file system most suited to their
work load on any standard OS. Lastly, we did not want
to incur any overheads on non-transactional processes.

Inversion File System [24], OdeFS [5], iFS [26], and
DBFS [21] are database file systems implemented as
user-level NFS servers [17]. As they are NFS servers
(which predate NFSv4’s locking and callback capabil-
ities [38]), the NFS client’s cache can serve requests
without consulting the NFS server’s database; this could
allow a client application to write to a portion of the file
system that has since been locked by another applica-
tion, violating the client application’s isolation. They do
not address the problem of supporting efficient transac-
tions on the local disk.

2.3 Database Access APIs

The other common approach to providing a transactional
interface to applications is to provide a user-level li-
brary to store data in a special page file or B-Tree main-
tained by the library. Berkeley DB offers a B-Tree, a
hash table, and other structures [39]. Stasis offers a
page file [34]. These systems require applications to use
database-specific APIs to access or store data in these
library-controlled page files.

Based on our experiences with KBDBFS, we chose
to prototype a transactional file system, again built on
BDB, but in user space. Our prototype, Amino, utilized
Linux’s process debugging interface,ptrace [8], to ser-
vice file-system–related calls on behalf of other pro-
cesses, storing all data in an efficient Berkeley DB B-tree
schema. Through Amino we demonstrated two main
ideas. First, we revealed the ability to provide trans-
actional semantics to user-level applications. Second,
we showed the benefits that user-level programs gain
when they use these transactional semantics: program-
ming model simplification and application-level con-
sistency [44]. Although we extendedptrace to re-
duce context switches and data copies, Amino’s per-
formance was still poor compared to an in-kernel file
system for some system-call–intensive workloads (such
as the configuration phase of a compile). Finally, al-
though Amino’s performance was comparable to Ext3
for metadata workloads (such as Postmark [14]), for
data-intensive workloads, Amino’s database layout re-
sulted in significantly lower throughput. Amino was a
successful project in that it validated the concept of a

3

transactional file system with a user-visible transactional
API, but the performance we achieved could not displace
traditional file systems. Moreover, one of our primary
goals is for transactional and non-transactional programs
to have access to the same data through the file system
interface. Although Amino provided binary compatibil-
ity with existing applications, running programs through
a ptrace monitor is not as seamless as we liked. The
ptrace monitor had to run in privileged mode to service
all processes, it serviced system calls inefficiently due
to additional memory copies and context switches, and
it imposed additional overhead from using signal pass-
ing to simulate a kernel system call interface for appli-
cations [44]. Other user level approaches to providing
transactional interfaces include Berkeley DB and Stasis.

Berkeley DB. Berkeley DB is a user library that pro-
vides applications with an API to transactionally update
key-value pairs in an on-disk B-Tree. We discuss Berke-
ley DB’s relative performance in depth in Section 4. We
benchmark BDB through Valor’s file system extensions.
Relying on BDB to perform file system operations can
result in large overheads for large serial writes or large
transactions (256MiB or more). This is because BDB is
being used to provide a file interface, which is used by
applications with different work-loads than applications
that typically use a database. If the regular BDB in-
terface is used, though, transaction-oblivious processes
cannot interact with transactional applications, as the
formed use the file system interface directly.

Stasis. Stasis provides applications a transactional in-
terface to a page file. Stasis requires that applications
specify their own hooks to be used by the database to
determine efficient undo and redo operations. Stasis sup-
ports nested transactions [7] alongside write-ahead log-
ging and LSN-Free pages [34] to improve performance.
Stasis does not require applications to use a B-Tree on
disk and exposes the page file directly. Like BDB, Sta-
sis requires applications to be coded against its API to
read and write transactionally. Like BDB, Stasis does
not provide a transactional interface on top of an exist-
ing file system which already contains data. Also like
BDB, Stasis implements its own private, yet redundant
page cache which is less efficient than cooperating with
the kernel’s page cache (see Section 4).

Reflecting on our experience with KBDBFS and
Amino, we have come to the conclusion that adapting
the file system interface to support ACID transactions
does indeed have value and that the two most valu-
able properties that the database provided to us were
the logging and the locking infrastructure. Therefore,
in Valor we provide two key kernel facilities: (1) ex-
tended mandatory locking and (2) simple write order-
ing. Extended mandatory locking lets Valor provide the

isolation that in our previous prototypes was provided
by the database’s locking facility. Simple write ordering
lets Valor’s logging facility use the kernel’s page cache
to buffer dirty pages and log pages which reduces re-
dundancy, improves performance, and makes it easier to
support transactions on top of existing file systems.

3 Design and Implementation
The design of Valor prioritizes (1) a low complexity ker-
nel design, (2) a versatile interface that makes use of
transactions optional, and (3) performance. Our seam-
less approach achieves low complexity by exporting just
a minimal set of system calls to user processes. Func-
tionality exposed by these system calls would be difficult
to implement efficiently in user-space.

Valor allows applications to perform file-system op-
erations within isolated and atomic transactions. Iso-
lation guarantees that file-system operations performed
within one transaction have no impact on other pro-
cesses. Atomicity guarantees that committing a trans-
action causes all operations performed in it to be per-
formed at once, as a unit inseparable even by a sys-
tem crash. If desired, Valor can ensure a transaction
is durable: if the transaction completes, the results are
guaranteed to be safe on disk. We now turn to Valor’s
transactional model, which specifies the scope of these
guarantees and what processes must do to ensure they
are provided.

Transactional Model. Valor’s transactional guaran-
tees extend to the individual inodes and pages of di-
rectories and regular files for reads and writes. A pro-
cess must lock an entire file if it will read from or write
to its inode. Appends and truncations modify the file
size, so they also must lock the entire file. To overwrite
data in a file, only the affected pages need to be locked.
When performing directory operations like file creation
and unlinking, only the containing directory needs to be
locked. When renaming a directory, processes must also
recursively lock all of the directory’s descendants. This
is the accepted way to handle concurrent lockers dur-
ing a directory rename [27]. More sophisticated lock-
ing schemes (e.g., intent locks [3]) that improve per-
formance and relieve contention among concurrent pro-
cesses are beyond the scope of this paper.

We now turn to the concepts underlying Valor’s archi-
tecture. These concepts are implemented as components
of Valor’s system; they are illustrated in Figure 1.

1. Logging Device. In order to guarantee that a se-
quence of modifications to the file system completes as
a unit, Valor must be able to undo partial changes left
behind by a transaction that was interrupted by either a
system crash or a process crash. This means that Valor
must store some amount of auxiliary data, because an

4

Figure 1: Valor Architecture

unmodified file system can only be relied upon to atomi-
cally update a single sector and does not provide a mech-
anism for determining the state before an incomplete
write. Common mechanisms for storing this auxiliary
data include alog [7] and WAFL [13]. Valor does not
modify the existing file system, so it uses a log stored on
a separate partition called thelog partition.

2. Simple Write Ordering. Valor relies on the fact
that even if a write to the file system fails to complete,
the auxiliary information has already been written to the
log. Valor can use that information to undo the partial
write. In short, Valor needs to have a way to ensure that
writes to the log partition occur before writes to other
file systems. This requirement is a special case ofwrite
ordering, in which the page cache can control the order
in which its writes reach the disk. We discuss our im-
plementation in Section 3.1, which we callsimple write
orderingboth because it is a special case and because it
operates specifically at page granularity.

3. Extended Mandatory Locking. Isolation gives a
process the illusion that there are no other concurrently
executing processes accessing the same files, directories,
or inodes. Transactional processes can implement this
by first acquiring a lock before reading or writing to a
page in a file, a file’s inode, or a directory. However,
an OS with a POSIX interface and pre-existing appli-
cations must support processes that do not use transac-
tions. Thesetransaction-obliviousprocesses do not ac-
quire locks before reading from or writing to files or
directories. Extended mandatory lockingensures that
all processes acquire locks before accessing these re-
sources. See Section 3.2.

4. Interception Mechanism. New applications can
use special APIs to access the transaction functionality
that Valor provides; however, pre-existing applications
must be made to run correctly if they are executed in-
side a transaction. This could occur if, for example, a
Valor-aware application starts a transaction and launches
a standard shell utility. To do this, Valor modifies the
standard POSIX system calls used by unmodified appli-
cations to perform the locking necessary for proper iso-
lation. Section 3.3 describes our modifications.

The above four Valor components provide the neces-
sary infrastructure for the seven Valor system calls. Pro-
cesses that desire transactional semantics must use the
Valor system calls to log their writes and acquire locks
on files. We now discuss the Valor system calls and then
provide a short example to illustrate Valor’s basic oper-
ation.

Valor’s Seven System Calls. When an application
uses the following seven system calls correctly (e.g.,
calling the appropriate system call before writing to a
page), Valor provides that application fully transactional
semantics. This is true even if other user-level applica-
tions do not use these system calls or use them incor-
rectly.

Log Begin begins a transaction. This must be called
before all other operations within the transaction.

Log Append logs anundo-redo record, which stores
the information allowing a subsequent operation to
be reversed. This must be called before every oper-
ation within the transaction. See Section 3.1.

Log Resolve ends a transaction. In case of an error, a
process may voluntarilyabort a transaction, which
undoes partial changes made during that transac-
tion. This operation is called anabort. Conversely,
if a process wants to end the transaction and en-
sure that changes made during a transaction are all
done as an atomic unit, it cancommitthe transac-
tion. Whether alog resolve is a commit or an
abort depends on a flag that is passed in.

Transaction Sync flushes a transaction to disk. A
process may callTransaction Sync to ensure
that changes made in its committed transactions
are on disk and will never be undone. This is the
only sanctioned way to achieve durability in Valor.
O DIRECT, O SYNC, andfsync [9] have no useful
effect within a transaction for the same reason that
nested transactions cannot be durable: the parent
transaction has yet to commit [7].

Lock, Lock Permit, Lock Policy Our Lock sys-
tem call locks a page range in a file, an entire di-
rectory, or an entire file with a shared or exclusive
lock. This is implemented as a modifiedfcntl .
These routines provide Valor’s support for transac-

5

tional isolation.Lock Permit andLock Policy

are required for security and inter-process transac-
tions, respectively. See Section 3.2.

Cooperating with the Kernel Page Cache. As illus-
trated in Figure 1, the kernel’s page cache is central to
Valor, and one of Valor’s key contributions is its close
cooperation with the page cache. In systems that do
not support transactions, thewrite(2) system call ini-
tiates an asynchronous write which is later flushed to
disk by the kernel page cache’s dirty-page write-back
thread. In Linux, this thread is calledpdflush [1].
If an application requires durability in this scenario,
it must explicitly call fsync(2) . Omitting durability
by default is an important optimization which allows
pdflush to economize on disk seeks by grouping writes
together. Databases, despite introducing transaction se-
mantics, achieve similar economies throughNo-Force
page caches. These caches write auxiliary log records
only when a transaction commits, and then only as one
large serial write, and use threads similar topdflush

to flush data pages asynchronously [7]. Valor is also
No-Force, but can further reduce the cost of commit-
ting a transaction by writing nothing—neither log pages
nor data pages—untilpdflush activates. Valor’s sim-
ple write ordering scheme facilitates this optimization by
guaranteeing that writes to the log partition always oc-
cur before the corresponding data writes. In the absence
of simple write ordering, Valor would be forced to im-
plement a redundant page cache, as many other systems
do. Valor implements simple write ordering in terms of
existing Linuxfsync semantics which returns when the
writes are scheduled, but before they hit the disk plat-
ter. This introduces a short race where applications run-
ning on top of Valor and the other systems we evaluated
(Berkeley DB, Stasis, and ext3) could crash unrecover-
ably. Unfortunately, this is the standardfsync imple-
mentation and impacts other systems such as MySQL,
Berkeley DB, and Stasis [45] which rely onfsync or its
like (i.e., fdatasync , O SYNC, and direct-IO).

One complexity introduced by this scheme is that a
transaction may be completely written to the log, and re-
ported as durable and complete, but its data pages may
not yet all be written to disk. If the system crashes in
this scenario, Valor must be able to complete the disk
writes during recovery to fulfill its durability guarantee.
Similar to database systems that also perform this opti-
mization, Valor includes sufficient information in the log
entries toredo the writes, allowing the transaction to be
completed during recovery.

Another complexity is that Valor supports large trans-
actions that may not fit entirely in memory. This means
that some memory pages that were dirtied during an in-
complete transaction may be flushed to disk to relieve

memory pressure. If the system crashes in this scenario,
Valor must be able to rollback these flushes during re-
covery to fulfill its atomicity guarantee. Valor writes
undo records describing the original state of each af-
fected page to the log when flushing in this way. A page
cache that supports flushing dirty pages from uncommit-
ted transactions is known as aStealcache; XFS [41],
ZFS [40], and other journaling file systems are No-Steal,
which limits their transaction size [42] (see Section 2).
Valor’s solution is a variant of the ARIES transaction re-
covery algorithm [20].

An Example. Figure 2 illustrates Valor’s writeback
mechanism. A processP2 initially calls theLock sys-
tem call to acquire access to two data pages in a file,
then calls theLog Append system call on them, gener-
ating the two ’L’s in the figure, and then callswrite(2)

to update the data contained in the pages, generating the
two ’P’s in the figure. Finally, it commits the transac-
tion and quits. The processes did not calltransaction

sync . On the left hand side, the figure shows the state of
the system beforeP2 commits the transaction; because
of Valor’s non-durable No-Force logging scheme, data
pages and corresponding undo/redo log entries both re-
side in the page cache. On the right hand side, the pro-
cess has committed and exited; simple write ordering
ensures that the log entries are safely resident on disk,
and the data pages will be written out bypdflush as
needed.

Figure 2: Valor Example

We now discuss each of Valor’s four architectural
components in detail. Section 3.1 discusses the log-
ging, simple write ordering, and recovery components of
Valor. Section 3.2 discusses Valor’s extended mandatory
locking mechanism, and Section 3.3 explains Valor’s in-
terception mechanism.

6

3.1 The Logging Interface

Valor maintains two logs. Ageneral-purpose log
records information on directory operations, like adding
and removing entries from a directory, and inode op-
erations, like appends or truncations. Apage-value
log records modifications to individual pages in regular
files [2]. Before writing to a page in a regular file (dirty-
ing the page), and before adding or removing a name
from a directory, the process must callLog Append to
prepare the associated undo-redo record. We refer to
this undo-redo record as alog record. Since the bulk
of file system I/O is from dirtying pages and not direc-
tory operations, we have only implemented Valor’s page
log for evaluation. Valor manages its logs by keeping
track of the state of each transaction, and tracking which
log records belong to which transactions.

Figure 3: Valor Log Layout

3.1.1 In-Memory Data Structures

There are three states a transaction can be in during the
course of its life: (1)in-flight, in which the applica-
tion has calledLog Begin but has not yet calledLog

Resolve ; (2) landed, in which the application has called
Log Resolve but the transaction is not yet safe to deal-
locate; and (3)freeing, in which the transaction is ready
to be deallocated. Landed is distinct from freeing be-
cause if an application does not require durability,Log

Resolve causes neither the log nor the data from the
transaction to be flushed to disk (see above,Cooperat-
ing with the Kernel Page Cache).

Valor tracks a transaction by allocating acommit set
for that transaction. A commit set consists of a unique
transaction IDand a list of log records. As depicted
in Figure 3, Valor maintains separate lists of in-flight,
landed, and freeing commit sets. It also uses a radix tree
to track free on-disk log records.

Life Cycle of a Transaction. When a process calls
Log Begin , it gets a transaction ID by allocating a new
log record, called acommit record. Valor then creates an
in-memory commit set and moves it onto the inflight list.
During the lifetime of the transaction, whenever the pro-
cess callsLog Append , Valor adds new log records to
the commit set. When the process callsLog Resolve ,
Valor moves its commit set to the landed list and marks
it ascommittedor aborteddepending on the flag passed
in by the process. If the transaction is committed, Valor
writes amagic valueto the commit record allocated dur-
ing Log Begin . If the system crashes and the log is
complete, the value of this log record dictates whether
the transaction should be recovered or aborted.

One thing Valor must be careful about is the case in
which a log record is flushed to disk bypdflush , its
corresponding file page is updated with a new value, and
the file system containing that file page writes it to disk,
thus violating write ordering. To resolve this issue, Valor
keeps a flag in each page in the kernel’s page cache. This
flag can readavailableor unavailable; between the time
Valor flushes the page’s log record to the log and the
time the file system writes the dirty page back to disk,
it is marked as unavailable, and processes which try to
call Log Append to add new log records wait until it
becomes available, thus preserving our simple write or-
dering constraint. For hot file-system pages (e.g., those
containing global counters), this could result in bursty
write behavior. One possible remedy is to borrow Ext3’s
solution: when writing to anunavailablepage, Valor can
create a copy. The original copy remains read-only and
is freed after the flush completes. The new copy is used
for new reads and writes and is not flushed until the next
pdflush , maintaining the simple write ordering.

We modifiedpdflush to maintain Valor’s in-memory
data structures and to obey simple write ordering by
flushing the log’s super block before all other super
blocks. Whenpdflush runs, it (1) moves commit sets
which have been written back to disk to the freeing list,
(2) marks all page log records in the inflight and landed
lists as unavailable, (3) atomically transitions the disk
state to commit landed transactions to disk, and (4) it-
erates through the freeing list to deallocate transactions
which have been safely written back to disk.

Soft vs. Hard Deallocations. Valor deallocates log
records in two situations: (1) when aLog Append fails
to allocate a new log record, and (2) whenpdflush

runs. Soft deallocationwaits for pdflush to naturally
write back pages and moves a commit set to the freeing
list to be deallocated once all of its log records have had
their changes written back.Hard deallocationexplicitly
flushes a landed commit set’s dirty pages and directory
modifications so it can immediately deallocate it.

7

3.1.2 On-Disk Data Structures
Figure 3 shows the page-value log and general-purpose
log. Valor maintains tworecord mapfiles to act as su-
perblocks for the log files, and to store which log records
belong to which transactions. One of these record map
files corresponds to the general-purpose log, and the
other to the page-value log. For a given log, there are
exactly the same number of entries in the record map
as there are log records in the log. The five fields of a
record map entry are:

Transaction ID The transaction (commit set) this log
record belongs to.

Log Sequence Number (LSN) Indicates when this log
record was allocated.

inode Inode of the file whose page was modified.
netid Serial number of the device the inode resides on.
offset Offset of the page that was modified.

General-purpose log records contain directory path
names for recovery of original directory listings in case
of a crash. Page value log records contain a specially-
encoded page to store both the undo and the redo record.
The state file is part of the mechanism employed by
Valor to ensure atomicity. It is described in Section 3.1.3
along with Valor’s atomic flushing procedure.

Transition Value Logging. Although the undo-redo
record of an update to a page could be stored as the
value of the page before the update and the value af-
ter, Valor instead makes a reasonable optimization in
which it stores only the XOR of the value of the page
before and after the update. This is called atransition
page. Transition pages can be applied to either recover
or abort the on-disk image. A pitfall of this technique
is that idempotency is lost [7]; Valor avoids this prob-
lem by recording the location and value of the first bit
of each sector in the log record that differed between
the undo and redo image. Although log records are al-
ways page-sized, this information must be stored on a
per-sector basis as the disk may only write part of the
page. (Because meta-data is stored in a separate map,
transition pages in the log are all sector-aligned.) If a
transaction updates the same page multiple times, Valor
forces eachLog Append call to wait on the Page Avail-
able flag which is set by the simple write ordering com-
ponent operating withinpdflush . If it does not have to
wait, the call may update the log record’s page directly,
incurring no I/O. However, if the call must wait, then a
new log record must be made to ensure recoverability.

3.1.3 LDST: Log Device State Transition
Valor’s in-memory data structures are a reflection of
Valor’s on-disk state; however, as commit sets and log
records are added, Valor’s on-disk state becomes stale
until the next timepdflush runs. We ensure that

pdflush performs an atomic transition of Valor’s on-
disk state to reflect the current in-memory state, thus
making it no longer stale. To represent the previous and
next state of Valor’s on-disk files, we have astableand
unstablerecord map for each log file. The stable record
maps serve as an authoritative source for recovery in the
event of a crash. The unstable record maps are updated
during Valor’s normal operation, but are subject to cor-
ruption in the event of crashes. The purpose of Valor’s
LDST is to make the unstable record map consistent, and
then safely and atomically relabel the stable record maps
as unstable and vice versa. This is similar to the scheme
employed by LFS [32, 37].

The core atomic operation of the LDST is a pointer
update, in which Valor updates the state file. This file is a
pointer to the pair of record maps that is currently stable.
Because it is sector-aligned and less than one sector in
size, a write to it is atomic. All other steps ensure that
the record maps are accurate at the point in time where
the pointer is updated. The steps are as follows:

1. Quiesce (block) all readers and writers to any on-
disk file in the Valor partition.

2. Flush the inodes of the page-value and general-
purpose log files. This flushes all new log records
to disk. Log records can only have been added, so a
crash at this point has no effect as the stable records
map does not point to any of the new entries.

3. Flush the inodes of the unstable page-value and
general-purpose record map files.

4. Write the names of the newly stable record maps to
the state file.

5. Flush the inode of the state file. The up-to-date
record map is now stable, and Valor now recovers
from it in case of a system crash.

6. Copy the contents of the stable (previously unsta-
ble) record map over the contents of the unstable
(previously stable) record map, bringing it up to
date.

7. Un-quiesce (unblock) readers and writers.
8. Free all freeing log records.

Atomicity. The atomicity of transactions in Valor fol-
lows from two important constraints which Valor en-
sures that the OS obeys: (1) that writes to the log par-
tition and data partitions obey simple write ordering and
(2) that the LDST is atomic. At mount time, Valor runs
recovery (Section 3.1.4) to ensure that the log is ready
and fully describes the on-disk system state when it is
finished mounting. Thereafter, all proper transactional
writes are preceded byLog Append calls. No writes go
to disk untilpdflush is called or Valor’sTransaction

Sync is called. Simple write ordering ensures that in
both cases, the log records are written before the in-
place updates, so no update can reach the disk unless its

8

corresponding log record has already been written. Log
records themselves are written atomically and safely be-
cause writes to the log’s backing store are only made
during an LDST. Since an LDST is atomic, the state of
the entire system advances forward atomically as well.

3.1.4 Performing Recovery
System Crash Recovery. During the mount opera-
tion, the logging device checks to see if there are any
outstanding log records and, if so, runs recovery. Dur-
ing umount , the Logging Device flushes all commit-
ted transactions to disk and aborts all remaining trans-
actions. Valor can perform recovery easily by reading
the state file to determine which record map for each log
is stable, and reconstructing the commit sets from these
record maps. A log sequence number (LSN) stored in
the record map allows Valor to read in reverse order the
events captured within the log and play them forward or
back based on whether the write needs to be completed
to satisfy durability or rolled back to satisfy atomicity.
Recovery finds all record map entries and makes a com-
mit set for each of them which is by default marked as
aborted. While traversing through record map entries if
it finds a record map entry with a magic value (written
asynchronously duringLog Resolve) indicating that
this transaction was committed, it marks that set com-
mitted. Finally all commit sets are deallocated and an
LDST is performed. The system can come on line.

Process Crash Recovery. Recovery handles the case
of a system crash, something handled by all journaling
file systems. However, Valor also supports user-process
transactions and, by extension, user-process recovery.
When a process calls thedo exit process clean-up rou-
tine in the kernel, theirtask struct is checked to see
if a transaction was in-flight. If so, then Valor moves the
commit set for the transaction onto the landed list and
marks the commit set as aborted.

3.2 Ensuring Isolation
Extended mandatory lockingis a derivation of manda-
tory locking, a system already present in Linux and So-
laris [10, 18]. Mandatory locks are shared for reads but
exclusive for writes and must be acquired by all pro-
cesses that read from or write to a file. Valor adds
these additional features: (1) a locking permission bit
for owner, group, and all (LPerm), (2) a lock policy sys-
tem call for specifying how locks are distributed upon
exit , and (3) the ability to lock a directory (and the re-
quirement to acquire this lock for directory operations).
System calls performed by non-transactional processes
that write to a file, inode, or directory object acquire
the appropriate lock before performing the operation and
then release the lock upon returning from the call. Non-
transactional system calls are consequently two-phase

with respect to exclusive locks and well-formed with re-
spect to writes. Thus Valor provides degree 1 isolation.
In this environment, then, by the degrees of isolation the-
orem [7], transactional processes that obey higher de-
grees of isolation can have transactions with repeatable
reads (degree 3) and no lost updates (degree 2).

Valor supports inter-process transactions by imple-
menting inter-process locking. Processes may specify
(1) if their locks can be recursively acquired by their
children, and (2) if a child’s locks are released or instead
given to its parent when the child exits. These specifica-
tions are propagated to the Extended Mandatory Lock-
ing system with theLock Policy system call.

Valor prevents misuse of locks by allowing a pro-
cess to acquire a lock only under one of two circum-
stances: (1) if the process has permission to acquire a
lock on the file according to the LPerm of the file, or
(2) if the process has read access or write access, de-
pending on the type of the lock. Only the owner of a
file can change the LPerm, but changes to the LPerm
take effect regardless of transactions’ isolation seman-
tics. Deadlock is prevented using a deadlock-detection
algorithm. If a lock would create a circular dependency,
then an error is returned. Transaction-aware processes
can then recover gracefully. Transaction-oblivious pro-
cesses should check the status of the failed system call
and return an error so that they can be aborted. This
works well in practice. We have successfully booted,
used, and shutdown a previous version of the Valor sys-
tem with extended mandatory locking and the standard
legacy programs. A related issue is the locking of fre-
quently accessed file-system objects or pages. The de-
fault Valor behavior is to provide degree 1 isolation,
which prevents another transaction from accessing the
page while another transaction is writing to it. For
transaction-oblivious processes, because each individ-
ual system call is treated as a transaction, these locks
are short lived. For transaction-aware processes, an ap-
propriate level of isolation can be chosen (e.g., degree
2—no lost updates) to maximize concurrency and still
provide the required isolation properties.

3.3 Application Interception

Valor supports applications that are aware of trans-
actions but need to invoke subprocesses that are not
transaction-aware within a transaction. Such a subpro-
cess is wrapped in a transaction that begins when it
first performs a file operation and ends when it exits.
This is useful for a transactional process that forks sub-
processes (e.g.,grep) to do work within a transaction.
During system calls, Valor checks a flag in the process
to determine whether to behave transactionally or not.
In particular, when a process isfork ed, it can specify if
its child is transaction-oblivious. If so, the child has its

9

Transaction ID set to that of the parent and its in-flight
state set to Oblivious. When the process performs any
system call that constitutes a read or a write on a file,
inode, or directory object, the in-flight state is checked,
and an appropriateLog Append call is made with the
Transaction ID of the process.

4 Evaluation
Valor provides atomicity, isolation, and durability, but
these properties come at a cost: writes between the log
device and other disks must be ordered, transactional
writes incur additional reads and writes, and in-memory
data structures must be maintained. Additionally, Valor
is designed to provide these features while only requir-
ing minor changes to a standard kernel’s design. In
this section we evaluate the performance of our Valor
design and also compare it to stasis and BDB. Sec-
tion 4.1 describes our experimental setup. Section 4.2
analyzes a benchmark based on an idealized ARIES
transaction logger to derive a lower bound on overhead.
Section 4.3 evaluates Valor’s performance for a serial
file overwrite. Section 4.4 evaluate Valor’s transaction
throughput. Section 4.5 analyzes Valor’s concurrent per-
formance. Finally, Section 4.6 measure Valor’s recovery
time. All benchmarks test scalability.

4.1 Experimental Setup
We used four identical machines, each with a 2.8GHz
Xeon CPU and 1GB of RAM for benchmarking. Each
machine was equipped with six Maxtor DiamondMax 10
7,200 RPM 250GB SATA disks and ran CentOS 5.2 with
the latest updates as of September 6, 2008. To ensure a
cold cache and an equivalent block layout on disk, we
ran each iteration of the relevant benchmark on a newly
formatted file system with as few services running as
possible. We ran all tests at least five times and com-
puted 95% confidence intervals for the mean elapsed,
system, user, and wait times using the Student’s-t dis-
tribution. In each case, unless otherwise noted, the half
widths of the intervals were less than 5% of the mean.
Wait time is elapsed time less system and user time and
mostly measures time performing I/O, though it can also
be affected by process scheduling. We benchmarked
Valor on the modified Valor kernel, and all other systems
on a stable unmodified 2.6.25 Linux kernel.

Comparison to Berkeley DB and Stasis. The most
similar technologies to Valor are Stasis and Berkeley
DB (BDB): two user level logging libraries that provide
transactional semantics on top of a page store for trans-
actions with atomicity and isolation and with or with-
out durability. Valor, Stasis, and BDB were all config-
ured to store their logs on a separate disk from their
data, a standard configuration for systems with more
than one disk [7]. The logs used by Valor, Stasis, and

BDB were set to 128MiB. Since Valor prioritizes non-
durable transactions, we configured Stasis and BDB to
also use non-durable transactions. This configuration
required modifying the source code of Stasis to open
its log withoutO SYNCmode. Similarly, we configured
BDB’s environment withDB TXN WRITENOSYNC. The
ext3 file system performs writes asynchronously by de-
fault. For file-system workloads it is important to be
able to perform efficient asynchronous serial writes, so
non-durable transactions performing asynchronous se-
rial writes were the focus during our benchmarking.
BDB indexed each page in the file by its page offset
and file ID (an identifier similar to an inode number).
We used the B-Tree access method as this is the suitable
choice for a large file system [44].

4.2 Mock ARIES Lower Bound
Figure 4 compares Valor’s performance against a mock
ARIES transaction system to see how close Valor comes
to the ideal performance for its chosen logging sys-
tem. We configured a separate logging block device with
ext2 , in order to avoid overhead from unnecessary jour-
naling in the file system. We configured the data block
device with ext3 , since journaled file systems are in
common use for file storage. We benchmarked a 2GiB
file overwrite under three mock systems. MT-ow-noread
performed the overwrite by writing zeros to theext2

device to simulate logging, and then writing zeros to the
ext3 device to simulate write back of dirty pages. MT-
ow differs from MT-ow-noread in that it copies a pre-
existing 2GiB data file to the log to simulate time spent
reading in the before image. MT-ow-finite differs from
the other mock systems in that it uses a 128MiB log,
forcing it to break its operation into a series of 128MiB
copies into the log file and writes to the data file. A trans-
action manager based on the ARIES design must do at
least as much I/O as MT-ow-finite. Valor’s overhead on
top of MT-ow-finite is 35%. Stasis’s is 104%. The cost
of MT-ow reading the before images as measured by the
overhead of MT-ow on MT-ow-noread is only 2%. The
cost of MT-ow-finite restricting itself to a finite log is
16% due to required additional seeking. Stasis’s over-
head is more than Valor’s overhead due to maintaining a
redundant page cache in user space.

4.3 Serial Overwrite
In this benchmark we measure the time it takes for a
process to transactionally overwrite an existing file. File
transfers are an important workload for a file system.
See Figure 5. Providing transactional protection to large
file overwrites demonstrates Valor’s ability to scale with
larger workloads and handle typical file system opera-
tions. Since there is data on the disk already, all sys-
tems butext3 must log the contents of the page before

10

 0

 20

 40

 60

 80

 100

 120

Stasis
Valor

MT-ow-finite

MT-ow
MT-ow-noread

Ext3

E
la

ps
ed

 T
im

e
(s

ec
)

17.8

34.9 35.7
41.3

55.7

84.2

Wait
User

System

Figure 4: Valor and Stasis’s performance relative to Mock
ARIES Lower Bound

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 256 512 1024 2048

E
la

ps
ed

 T
im

e
(s

ec
, l

og
)

Append Size in MB

Ext3
Stasis
Valor
BDB

Figure 5: Async serial overwrite of files of varying sizes

overwriting it. The transactional systems use a trans-
action size of 16 pages. The primary observation from
these results is that each system scales linearly with re-
spect to the amount of data it must write. Valor runs
2.75 times longer thanext3 , spending the majority of
that overhead writing Log Records to the Log Device.
Stasis runs 1.75 times slower than Valor. It spends ad-
ditional time allocating pages in user space for its own
page cache, and doing additional memory copies for its
writes to both its log and its store file. For the 512 MiB
over write of Valor and Stasis, and the 256 MiB over
write of Stasis the half-widths were 11%, 7%, and 23%
respectively. The asynchronous nature of the benchmark
caused Valor and Stasis’ page cache to introduce fluctu-
ations in an otherwise stable serial write. BDB’s on-disk
B-Tree format, which is very different from Stasis’s and
Valor’s simple page-based layout, makes it difficult to
perform well in this I/O intensive workload that has little
need forlog(n) B-Tree lookups. Because of this Valor
runs 8.22 times the speed of BDB.

4.4 Transaction Granularity
We measured the rate for processing small durable trans-
actions with varying transaction sizes. This benchmark
establishes Valor’s ability to handle many small transac-

 4

 16

 64

 256

 1024

 1 2 4 8 16 32 64 128 256

E
la

ps
ed

 T
im

e
(s

ec
, l

og
)

Transaction granularity in pages of size 4KB

Ext3
Valor
BDB

Stasis

Figure 6: Run times for transactions, increasing granularity

tions, and indicates the overhead of beginning and com-
mitting a transaction on a write. We measured BDB,
Valor, Stasis, andext3 . For ext3 we simply used the
native page size on the disk. See Figure 6. The through-
put benchmark is simply the overwrite benchmark from
Section 4.3, but we vary the size of the transaction rather
than the amount of data to write. We see the typical
result that the non-transactional system (ext3) is un-
affected: transactional systems converge on a constant
factor of the non-transactional system’s performance as
the overhead of beginning and committing a transaction
approaches zero. BDB converges on a factor of 23 of
ext3 ’s elapsed time, Stasis converges on a factor of 4.2,
and Valor converges on a factor of 2.9. It is interest-
ing that Valor has an overhead of 76% with respect to
Stasis, and Stasis has an overhead of 25% with respect
to BDB for single page transactions. BDB is oriented
toward small transactions making updates to a B-Tree,
not serial I/O. As the granularity decreases, Stasis and
BDB converge to less efficient constant factors of the
non-transactionalext3 ’s performance than what Valor
converges to. This would imply that Valor’s overhead for
Log Append is lower than Stasis’s since Valor operates
from within the kernel and eliminates the need for a re-
dundant page cache. For one page transactions BDB has
already converged to a constant factor ofext3 s perfor-
mance starting at 1-page transactions: for transactions
less than one page in size, BDB began to perform worse.

4.5 Concurrent Writers

Concurrency is an important measure of how a file inter-
face can handle seeking and less memory while writing.
One application of Valor would be to grant atomicity to
package managers which may unpack large packages in
parallel. To measure concurrency we ran varying num-
bers of processes that would each serially overwrite an
independent file concurrently. Each process wrote 1GiB
of data to its own file, and we ran the benchmark with 2,
4, 8, and 16 processes running concurrently. Figure 7 il-

11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 8 16

E
la

ps
ed

 T
im

e
(s

ec
)

Number of Processes

Ext3
Valor
BDB

Stasis

Figure 7: Execution times for multiple concurrent processes
accessing different files

lustrates the results of our benchmark. For low numbers
of processes (2, 4, and 8) BDB had half-widths of 35%,
6%, and %5 because of the high variance introduced by
BDB’s user space page cache. Stasis and BDB run at
2.7 and 7.5 times the elapsed time ofext3 . For the 2,
4, 8, and 16 process cases, Valor’s elapsed time is 3.0,
2.6, 2.4, and 2.3 times that ofext3 . What is notable is
that these times converge on lower factors ofext3 for
high numbers of concurrent writers. The transactional
systems must perform a serial write to a log followed by
a random seek and a write for each process. BDB and
Stasis must maintain their page caches, and BDB must
maintain B-Tree structures on disk and in memory. For
small numbers of processes, the additional I/O of writ-
ing to Valor’s log widens the gap between transactional
systems andext3 , but as the number of processes and
therefore the number of files being written to at once in-
creases, the rate of seeks overtakes the cost of an extra
log serial write for each data write, and maintenance of
on-disk or in-memory structures for BDB and Stasis.

4.6 Recovery

One of the main goals of a journaling file system is to
avoid a lengthyfsck on boot [11]. Therefore it is im-
portant to ensure Valor can recover from a crash in a
finite amount of time with respect to the disk. Valor’s
ability to recover a file after a crash is based on its log-
ging an equivalent amount of data during operation. The
amount of total data that Valor must recover cannot ex-
ceed the length of Valor’s log, which was 128 MiB in all
our benchmarks. Valor’s recovery process consists of:
(1) reading a page from the log, (2) reading the original
page on disk, (3) determining whether to roll forward
or back, and (4) writing to the original page if neces-
sary. To see how long Valor took to recover for a typical
amount of uncommitted data, we tested the recovery of
8MiB, 16MiB and 32MiB of uncommitted data. In the
first trial, two processes were appending to separate files

 0

 0.5

 1

 1.5

 2

3/32-rec

3/16-rec

3/8-rec

2/32-rec

2/16-rec

2/8-rec

E
la

ps
ed

 T
im

e
(s

ec
)

0.3 0.5

1.1

0.5 0.8

1.6
Wait
User

System

Figure 8: Time spent recovering from a crash for varying
amounts of uncommitted data and varying number of processes

when they crashed, and their writes had to be rolled back
by recovery. In the second trial, three processes were
appending to separate files. Process crash was simu-
lated by simply callingexit(2) and not committing the
transaction. Valor first reads the Record Map to reconsti-
tute the in-memory state at the time of crash, then plays
each record forward or back in reverse Log Sequence
Number (LSN) order. Figure 8 illustrates our recovery
results. Label2/8-rec in the figure shows elapsed time
taken by recovery to recover 8MiB of data in the case of
2 process crash. We see that although the amount of time
spent recovering is proportional to the amount of uncom-
mitted data for both the 2 and 3 process case, that recov-
ering 3 processes takes more time than for 2 because of
additional seeking back and forth between pages on disk
associated with log records for 3 uncommitted transac-
tions instead of 2. 2/32-rec is 2.31 times slower than
2/16-rec and 2/16-rec is 1.46 times slower than 2/8-rec
due to varying size of recoverable data. Similarly, 3/32-
rec is 2.04 times slower than 3/16-rec and 3/16-rec is 1.5
times slower than 3/8-rec. Keeping the amount of recov-
erable data same we see that 3 processes have 44%, 63%,
and 60% overhead compared to 2 process with recover-
able data of 8MiB, 16MiB, 32MiB, respectively. In the
worst case, Valor recovery can become a random read of
128MiB of log data, followed by another random read of
128MiB of on-disk data, and finally 128MiB of random
writes to roll back on-disk data.

Valor does no logging for read-only transactions (e.g.,
getdents , read) because they do not modify the file
system. Valor only acquires a read lock on the pages be-
ing read, and, because it calls directly down into the file
system to service the read request, there is no overhead.

Systems which use an additional layer of software to
translate file system operations into database operations
and back again introduce additional overhead. This is
why Valor achieves good performance with respect to
other database-based user level file system implemen-

12

tations that provide transactional semantics. These al-
ternative APIs can perform well in practice, but only if
applications use their interface, and constrain their work-
loads to reads and writes that perform well in a standard
database rather than a file system. Our system does not
have these restrictions.

5 Conclusions
Applications can benefit greatly from having a POSIX-
compliant transactional API that minimizes the number
of modifications needed to applications. Such appli-
cations can become smaller, faster, more reliable, and
more secure—as we have demonstrated in this and prior
work. However, adding transaction support to existing
OSs is hard to achieve simply and efficiently, as we had
explored ourselves in several prototypes.

This paper has several contributions. First, we de-
scribe two older prototypes and designs for file-based
transactions: (1) KBDBFS which attempted to port a
standalone BDB library and add file system support
into the Linux kernel—adding over 150,000 complex
lines-of-code to the kernel, duplicating much effort; (2)
Amino, which moved all that functionality to user level,
making it simpler, but incurring high overheads.

The second and primary contribution of this paper is
our design of Valor, which was informed by our previous
attempts. Valor runs in the kernel cooperating with the
kernel’s page cache, and runs more efficiently: Valor’s
performance comes close to the theoretical lower bound
for a log-based transaction manager, and scales much
better than Amino, BDB, and Stasis

Unlike KBDBFS, however, Valor integrates seam-
lessly with the Linux kernel, by utilizing its existing fa-
cilities. Valor required less than 100 LoC changes to
pdflush and another 300 LoC to simply wrap system
calls; the rest of Valor is a standalone kernel module
which adds less than 4,000 LoC to the stackable file sys-
tem template Valor was based on.

Future Work. One of our eventual goals is to explore
the use of Log Structured Merge Trees [25] to optimize
our general purpose log and provide faster name lookups
(e.g. decreasing the elapsed time offind).

Another interesting research direction is to use
NFSv4’s compound calls to implement network-based
file transactions [38]. This may require semantic change
to NFSv4 so as to not allow partial success of some op-
erations within a compound, and to allow the NFS server
to perform atomic updates to its back-end storage.

Finally we intend to further investigate the ramifica-
tions of weakeningfsync semantics in light of current
trends in hard drive write cache design. We want to ex-
plore the possibility of extending asynchronous barrier
writes based on native command queueing to the user
level layer so that systems which use atomicity mecha-

nisms across multiple devices (e.g., via a logical volume
manager or multiple mounts) can retain atomicity. We
believe we could avoid hard drive cache flushes [23] us-
ing tagged I/O support for SATA drives and export this
write ordering primitive to layers higher than the block
device and file system implementation. We also are in-
terested in analyzing the probability of failure when us-
ing varying semantics forfsync as well as analyzing
the associated performance trade-offs.

Acknowledgments. We thank the anonymous review-
ers and our shepherd, Ohad Rodeh, for their helpful
comments. Special thanks go to Russel Sears, Margo
Seltzer, Vasily Tarasov, and Chaitanya Yalamanchili for
their help evaluating this evolving project. This work
was made possible in part thanks to an NSF award CNS-
0614784.

References
[1] D. P. Bovet and M. Cesati.Understanding the LINUX KER-

NEL. O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebatopol, CA 95472, 2005.

[2] B. Cornell, P. A. Dinda, and F. E. Bustamante. Wayback: A
User-level Versioning File System for Linux. InProc. of the
Annual USENIX Technical Conf., FREENIX Track, pp. 19–28,
Boston, MA, Jun. 2004.

[3] R. Elmasri and S. B. Navathe.Fundamentals of Database Sys-
tems. Addison-Wesley, 3rd edition, 2000.

[4] E. Gal and S. Toledo. A transactional flash file system for mi-
crocontrollers. InProc. of the Annual USENIX Technical Conf.,
pp. 89–104, Anaheim, CA, Apr. 2005.

[5] N. H. Gehani, H. V. Jagadish, and W. D. Roome. OdeFS: A File
System Interface to an Object-Oriented Database. InProc. of
the 20th International Conf. on Very Large Databases, pp. 249–
260, Santiago, Chile, Sept. 1994. Springer-Verlag Heidelberg.

[6] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The
Cedar File System.Communications of the ACM, 31(3):288–
298, 1988.

[7] J. Gray and A. Reuter.Transaction processing: concepts and
techniques. Morgan Kaufmann, San Mateo, CA, 1993.

[8] M. Haardt and M. Coleman.ptrace(2). Linux Programmer’s
Manual, Section 2, Nov. 1999.

[9] M. Haardt and M. Coleman.fsync(2). Linux Programmer’s
Manual, Section 2, 2001.

[10] M. Haardt and M. Coleman.fcntl(2). Linux Programmer’s
Manual, Section 2, 2005.

[11] R. Hagmann. Reimplementing the Cedar file system using log-
ging and group commit. InProc. of the 11th ACM Sympo-
sium on Operating Systems Principles, pp. 155–162, Austin,
TX, Oct. 1987.

[12] J. S. Heidemann and G. J. Popek. Performance of cache coher-
ence in stackable filing. InProc. of the Fifteenth ACM Sympo-
sium on Operating Systems Principles, pp. 3–6, Copper Moun-
tain Resort, CO, Dec. 1995.

[13] D. Hitz, J. Lau, and M. Malcolm. File System Design for an
NFS File Server Appliance. InProc. of the USENIX Winter
Technical Conf., pp. 235–245, San Francisco, CA, Jan. 1994.

[14] J. Katcher. PostMark: A new filesystem benchmark. Technical
Report TR3022, Network Appliance, 1997.www.netapp.
com/tech_library/3022.html .

[15] S. R. Kleiman. Vnodes: An architecture for multiple filesystem
types in Sun UNIX. InProc. of the Summer USENIX Technical
Conf., pp. 238–247, Atlanta, GA, Jun. 1986.

13

[16] J. MacDonald, H. Reiser, and A. Zarochentcev. Reiser4 trans-
action design document.www.namesys.com/txn-doc.
html , Apr. 2002.

[17] D. Maziéres. A toolkit for user-level file systems. InProc.
of the Annual USENIX Technical Conf., pp. 261–274, Boston,
MA, Jun. 2001.

[18] R. McDougall and J. Mauro. Solaris Internals: Solaris 10
and OpenSolaris Kernel Architecture, Second Edition. Prentice
Hall, Upper Saddle River, New Jersey, 2006.

[19] Microsoft Corporation. Microsoft MSDN WinFS Documen-
tation. http://msdn.microsoft.com/data/winfs/ ,
Oct. 2004.

[20] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead
logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

[21] N. Murphy, M. Tonkelowitz, and M. Vernal. The De-
sign and Implementation of the Database File System.
www.eecs.harvard.edu/ ˜ vernal/learn/cs261r/
index.shtml , Jan. 2002.

[22] MySQL AB. MySQL: The World’s Most Popular Open Source
Database.www.mysql.org , Jul. 2005.

[23] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn.
Rethink the sync. InProc. of the 7th Symposium on Operat-
ing Systems Design and Implementation, pp. 1–14, Seattle, WA,
Nov. 2006.

[24] M. A. Olson. The Design and Implementation of the Inversion
File System. InProc. of the Winter 1993 USENIX Technical
Conf., pp. 205–217, San Diego, CA, Jan. 1993. USENIX.

[25] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
O’Neil. The log-structured merge-tree (LSM-tree).Acta Inf.,
33(4):351–385, 1996.

[26] Oracle Corporation. Oracle Internet File System
Archive Documentation. http://otn.oracle.com/
documentation/ifs_arch.html , Oct. 2000.

[27] B. Pawlowski, D. Noveck, D. Robinson, and R. Thurlow. The
nfs version 4 protocol. InIn Proc. of the 2nd International Sys-
tem Administration and Networking Conf., page 94, 2000.

[28] Calton Pu, Jim Johnson, Rogério de Lemos, Andreas Reuter,
David Taylor, and Irfan Zakiuddin. 06121 report: Break out
session on guaranteed execution. InAtomicity: A Unifying Con-
cept in Computer Science, 2006.

[29] Calton Pu and Jinpeng Wei. A methodical defense againsttoct-
tou attacks: The edgi approach. InProc. of the International
Symposium on Secure Software Engineering (ISSSE’06), pp.
399–409, Mar. 2006.

[30] V. K. Reddy and D. Janakiram. Cohesion Analysis in Linux
Kernel. apsec, 0:461–466, 2006.

[31] H. Reiser. ReiserFS.www.namesys.com/ , Oct. 2004.

[32] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system.ACM Transactions on
Computer Systems, 10(1):26–52, 1992.

[33] F. Schmuck and J. Wylie. Experience with transactions in
QuickSilver. InProc. of the 13th ACM Symposium on Oper-
ating Systems Principles, pp. 239–253, Pacific Grove, CA, Oct.
1991.

[34] R. Sears and E. Brewer. Stasis: Flexible TransactionalStorage.
In Proc. of the 7th Symposium on Operating Systems Design
and Implementation, Seattle, WA, Nov. 2006.

[35] M. Seltzer and M. Stonebraker. Transaction Support in Read
Optimized and Write Optimized File Systems. InProc. of
the Sixteenth International Conf. on Very Large Databases, pp.
174–185, Brisbane, Australia, Aug. 1990. Morgan Kaufmann.

[36] M. I. Seltzer. Transaction support in a log-structuredfile system.
In Proc. of the Ninth International Conf. on Data Engineering,
pp. 503–510, Vienna, Austria, Apr. 1993.

[37] M. I. Seltzer. Transaction Support in a Log-StructuredFile Sys-
tem. In Proc. of the Ninth International Conf. on Data Engi-
neering, pp. 503–510, Vienna, Austria, Apr. 1993.

[38] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck. NFS Version 4 Protocol. Technical
Report RFC 3530, Network Working Group, Apr. 2003.

[39] Sleepycat Software, Inc.Berkeley DB Reference Guide, 4.3.27
edition, Dec. 2004. www.oracle.com/technology/
documentation/berkeley-db/db/api_c/frame.
html .

[40] Sun Microsystems, Inc. Solaris ZFS file storage solution. So-
laris 10 Data Sheets, 2004. www.sun.com/software/
solaris/ds/zfs.jsp .

[41] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,
and G. Peck. Scalability in the XFS file system. InProc. of
the Annual USENIX Technical Conf., pp. 1–14, San Diego, CA,
Jan. 1996.

[42] Stephen Tweedie. Ext3, journaling filesystem. InOttawa Linux
Symposium, Jul. 2000. http://olstrans.sf.net/
release/OLS2000-ext3/OLS2000-ext3.html .

[43] S. Verma. Transactional NTFS (TxF).http://msdn2.
microsoft.com/en-us/library/aa365456.aspx ,
2006.

[44] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok. Extend-
ing ACID Semantics to the File System.ACM Transactions on
Storage (TOS), 3(2):1–42, Jun. 2007.

[45] Peter Zaitsev. True fsync in linux (on ide). Technical report,
MySQL AB, Senior Support Engineer, Mar. 2004.lkml.
org/lkml/2004/3/17/188 .

14

