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Abstract
Viruses and other malicious programs are an ever-

increasing threat to current computer systems. They
can cause serious damage and consume countless hours
of system administrators’ time to combat. Most cur-
rent virus scanners perform scanning only when a file
is opened, closed, or executed. Such scanners are ineffi-
cient because they scan more data than is needed. Worse,
scanning on close may detect a virus after it had already
been written to stable storage, opening a window for the
virus to spread before detection.

We developed Avfs, a true on-access anti-virus file
system that incrementally scans files and prevents in-
fected data from being committed to disk. Avfs is a
stackable file system and therefore can add virus de-
tection to any other file system: Ext3, NFS, etc. Avfs
supports forensic modes that can prevent a virus from
reaching the disk or automatically create versions of po-
tentially infected files to allow safe recovery. Avfs can
also quarantine infected files on disk and isolate them
from user processes. Avfs is based on the open-source
ClamAV scan engine, which we significantly enhanced
for efficiency and scalability. Whereas ClamAV’s per-
formance degrades linearly with the number of signa-
tures, our modified ClamAV scales logarithmically. Our
Linux prototype demonstrates an overhead of less than
15% for normal user-like workloads.

1 Introduction
Viruses, worms, and other malicious programs have ex-
isted since people started sharing files and using network
services [3, 15]. The growth of the Internet in recent
years and users’ demand for more active content has
brought with it an explosion in the number of virus and
worm attacks, costing untold hours of lost time. Orga-
nizations report more financial losses from viruses than
from any other type of attack—reaching well into the
millions [16]. Once infected, original file content may
not be recoverable. Viruses can transmit confidential
data on the network (e.g., passwords) allowing an at-
tacker to gain access to the infected machine. System ad-
ministrators must clean or reinstall systems that are not
adequately protected. A virus’s propagation wastes valu-

able resources such as network bandwidth, disk space,
and CPU cycles. Even if a site is not infected with a
virus, its servers can be overloaded with probes.

The most common countermeasure to malicious soft-
ware is a virus scanner. Virus scanners consist of two
parts: a scanning engine and a component that feeds
the data to the scanning engine. The scanning en-
gine searches for virus signatures, or small patterns that
uniquely identify a virus. Virus signatures should ide-
ally be kept short so that scanning is more efficient, but
at the same time they should be long enough to ensure
that there are very few, if any, false positives.

A virus scanner can either scan interactively or trans-
parently. An interactive scanner allows a user to request
a scan of a specific file or directory. Since this process
is cumbersome, most virus scanners also transparently
scan files by intercepting system calls or using other
operating-system–specific interception methods. Cur-
rently, most transparent scanners only scan files when
they are opened, closed, or executed.

Consider the case where a Linux file server exports
NFS or CIFS partitions to other machines on the net-
work. Suppose the file server has a virus scanner that
scans files when they are closed. Client A could create a
file on the server and then write the virus. Suppose that
before A closes the file, client B opens this file for read-
ing. In contrast to Windows, Linux does not implement
mandatory file locking. There is nothing that prevents
B from reading and executing the virus. Even if the file
server scans files both when they are opened and closed,
B could still execute the virus before it is detected as fol-
lows: (1) A writes part of the virus, (2) B opens the file
at which point the file is scanned, but no virus is found,
(3) A completes writing the virus, (4) B reads the rest
of the virus before A closes the file. Virus scanners that
scan files when discrete events occur, such as openor
close, leave a window of vulnerability between the
time that the virus is written and the time when detec-
tion occurs. Additionally, because the entire file must be
scanned at once, performance can suffer.

On-access scanning is an improvement over on-
open, on-close, and on-exec scanning. An on-
access scanner looks for viruses when an application
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reads or writes data, and can prevent a virus from ever
being written to disk. Since scanning is performed only
when data is read, as opposed to when the file is opened,
users are not faced with unexpected delays. We have
developed a stackable file system, Avfs, that is a true on-
access virus scanning system. Since Avfs is a stackable
file system, it can work with any other unmodified file
system (such as Ext2 or NFS), and it requires no operat-
ing system changes. For example, an Avfs mounted over
SMB can protect Windows clients transparently. In addi-
tion to virus detection, Avfs has applications to general
pattern matching. For example, an organization might
want to track or prevent employees copying files con-
taining the string “Confidential! Do not distribute!”.

To reduce the amount of data scanned, Avfs stores per-
sistent state. Avfs scans one page a time, but a virus
may span multiple pages. After scanning one page, Avfs
records state. When the next page is scanned, Avfs can
resume scanning as if both pages were scanned together.
After an entire file is scanned, Avfs marks the file clean.
Avfs does not scan clean files until they are modified.

Avfs supports two forensic modes. The first mode pre-
vents a virus from ever reaching the disk. When a pro-
cess attempts to write a virus, Avfs returns an error to
the process without changing the file. The second mode
does not immediately return an error to the process. Be-
fore the first write to a file is committed, a backup of
that file is made. If a virus is detected, then Avfs quaran-
tines the virus (no other process can access a file while it
is quarantined), allows the write to go through, records
information about the event, and finally reverts to the
original file. This leaves the system in a consistent state
and allows the administrator to investigate the event.

We have adapted the ClamAV open source virus
scanner to work with Avfs. ClamAV includes a virus
database that currently contains nearly 20,000 signa-
tures. Our improved scanning engine, which we call
Oyster, runs in the kernel and scales significantly bet-
ter than ClamAV. By running Oyster in the kernel we do
not incur unnecessary data copies or context switches.
Whereas ClamAV’s performance degrades linearly with
the number of virus signatures, Oyster scales logarith-
mically. Oyster also allows the system administrator to
decide what trade-off should be made between memory
usage and scanning speed. Since the number of viruses
is continuously growing, these scalability improvements
will become even more important in the future.

We have evaluated the performance of Avfs and Oys-
ter. Avfs has an overhead of 14.5% for normal user
workloads. Oyster improves on the performance of
ClamAV by a factor of 4.5.

The rest of the paper is organized as follows. Section
2 outlines the design of our system. Section 3 details the
design of our scanner. Section 4 details the design of our

file system. Section 5 discusses related work. Section 6
presents an evaluation of our system. We conclude in
Section 7 and discuss future directions.

2 Design overview
We begin with an overview of Avfs’s components and
our four main design goals:
Accuracy and high-security: We use a page-based on-

access virus scanner that scans in real time as op-
posed to conventional scanners that operate during
open and close operations. Avfs has support for
data-consistency using versioning and support for
forensics by recording malicious activity.

Performance: We enhanced the scanning algorithm
and avoided repetitive scanning using a state-
oriented approach. Our scan engine runs inside the
kernel, which improves performance by avoiding
message passing and data copying between the ker-
nel and user space.

Flexibility and portability: We designed a flexible
system in which the scanning module is separate
from the file system module. A stackable file sys-
tem allows for portability to different environments
and works with any other file system.

Transparent: Our system is transparent in that no user
intervention is required and existing applications
need not be modified to support virus protection.

Stackable file systems are a technique to layer new
functionality on existing file systems [19]. A stackable
file system is called by the Virtual File System (VFS)
like other file systems, but in turn calls a lower-level file
system instead of performing operations on a backing
store such as a disk or an NFS server. Before calling the
lower-level file system, stackable file systems can mod-
ify an operation or its arguments. The underlying file
system could be any file system: Ext2/3, NFS, or even
another stackable file system.

Avfs is a stackable file system that provides protec-
tion against viruses. Figure 1 shows a high-level view
of the Avfs infrastructure. When Avfs is mounted over
an existing file system it forms a bridge between the
VFS and the underlying file system. The VFS calls
various Avfs operations and Avfs in turn calls the cor-
responding operations of the underlying file system.
Avfs performs virus scanning and state updates dur-
ing these operations. Oyster is our virus-scanning en-
gine that we integrated into the Linux kernel. It ex-
ports an API that is used by Avfs for scanning files and
buffers of data. For example, a read from the Vir-
tual File System (VFS), vfs read(), translates into
avfs read() in the Avfs layer. The lower layer read
method (ext3 read()) is called and the data received
is scanned by Oyster.
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Figure 1: Avfs infrastructure

The relevant file system methods that the stacking in-
frastructure provides to us are read, write, open and
close. A page is the fundamental data unit in our file
system. Reads and writes occur in pages, and we per-
form virus scanning during individual page reads and
writes. This level of granularity has three key advan-
tages over scanning on open and close. First, we scan
for viruses at the earliest possible time: before the data
from a read is delivered to the user and before the data
from a write propagates to the disk. This reduces the
window of opportunity for any virus attack significantly.
Second, we have an opportunity to maintain the consis-
tency of file data because we scan data for viruses before
data gets written to disk. Third, with our state imple-
mentation we can scan files partially and incrementally.
The state implementation also allows us to mark com-
pletely scanned files as clean so that would not need to
be re-scanned if they are not modified.

In Section 3 we describe Oyster in detail and Section
4 we detail the design of Avfs.

3 Kernel-Based Virus Scanner
In Section 3.1 we describe the internals of ClamAV. In
Section 3.2 we describe the enhancements we made to
the ClamAV virus scanner.

3.1 ClamAV Overview
We decided to use the freely available Clam AntiVirus
(ClamAV) [11] scanner as the foundation for our kernel-
based virus scanner. ClamAV consists of a core scanner
library as well as various command line programs. We
modified the core ClamAV scanner library to run inside
the kernel, and call this scanner Oyster.

ClamAV Virus Database As of December 2003,
ClamAV’s database had 19,807 viruses. Although this
number is smaller than those of major commercial
virus scanners, which detect anywhere from 65,000 to
120,000 viruses, the number of viruses recognized by
ClamAV has been steadily growing. In the last six
months of 2003, over 12,000 new virus signatures were
added to the database.

The ClamAV virus definition database contains two
types of virus patterns: (1) basic patterns that are a sim-
ple sequence of characters that identify a virus, and (2)
multi-part patterns that consist of more than one basic
sub-pattern. To match a virus, all sub-patterns of a multi-
part pattern must match in order. ClamAV virus pat-
terns can also contain wildcard characters. The com-
bination of multi-part patterns and wildcard characters
allows ClamAV to detect polymorphic viruses. Poly-
morphic viruses are more difficult to detect than non-
polymorphic viruses, because each instance of a virus
has a different footprint from other instances.

Basic patterns tend to be longer than multi-part pat-
terns. Multi-part patterns have multiple pattern to iden-
tify a complete virus. The pattern lengths in the database
vary from two bytes (for sub-parts of a multi-part pat-
tern) to over 2KB long.

ClamAV Virus Detection Algorithm ClamAV uses
a variation of the Aho-Corasick pattern-matching al-
gorithm [1], which is well suited for applications that
match a large number of patterns against input text. The
algorithm operates in two steps: (1) a pattern matching
finite state machine is constructed, and (2) the text string
is used as the input to the automaton.

0 1 2 3 4
a b a a

b a5 6

Depth 0 Depth 1 Depth 2 Depth 3 Depth 4

a

b

b
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Figure 2: An automaton for keywords “abaa” and “abba”
over the alphabet {a,b}. Success transitions are shown with
solid lines. Final states are shown with bold circles. Failure
transition are shown with dotted lines.

To construct a pattern matching automaton, the Aho-
Corasick algorithm first builds a finite state machine for
all of the patterns. Figure 2 shows the automaton for the
keywords “abaa” and “abba” over the alphabet {a, b}.
State 0 denotes the starting state of the automaton, and
the final states are shown with bold circles. First, the pat-
tern “abaa” is added, creating states 0–4. Thereafter, the
pattern “abba” is added, creating states 5–6. Only two
additional states were required since both patterns share
the same prefix “ab.” Transitions over the characters of
the patterns are called success transitions.

Each state in the pattern-matching automaton must
have transitions for all letters in the alphabet. If a suc-
cess transition over a letter does not exist for some state,
then a failure transition is created. To set up a failure
transition, all states are processed in depth order; i.e., we

3



process states of depth n before states of depth n + 1. A
state’s depth s is defined as the length of the shortest path
from the start state 0 to s. Any failure transition for start
state 0 points back to state 0. Suppose that after match-
ing some prefix P = [1..k] of length k the automaton is
in state s. Also, suppose that there is no success transi-
tion for some character c starting from state s. A failure
transition for the character c is determined by following
transitions for prefix P [2..k]c starting from state 0.

Failure transitions are set up as follows. First, a miss-
ing transition for “b” from state 0 is set up to point back
to state 0. State 1 does not have a transition for “a,”
(there is no pattern that begins with “aa”). To determine
this failure transition, the first character is removed from
the prefix, and transitions for the remaining characters
are followed starting from state 0. So, the failure transi-
tion for “a” in state 1 points back to state 1. Similarly,
state 3 does not have a transition for “b” (there is no pat-
tern that begins with “abab”). To compute the failure
transition for “b” in state 3, transitions for “bab” are fol-
lowed from state 0. This failure transition points to state
2. Other failure transitions are set up similarly.

To determine if a text string contains any of the pat-
terns, it is applied as the input to the automaton. The au-
tomaton follows transitions for each character from the
input string until either the end of the string is reached,
or the automaton visits one of the final states. To de-
termine which pattern matches when the automaton vis-
its the final state s, we simply follow the shortest path
from the start state 0 to s. This automaton is a trie data
structure. Trie data structures are used for fast pattern
matching in input text. In the trie, each node and all of
its children have the same prefix. This prefix can be re-
trieved by traversing the trie from the root node.

To quickly look up each character read from the input,
ClamAV constructs a trie structure with a 256-element
lookup array for each of the ASCII characters. The
memory usage of ClamAV depends on how deep the trie
is. The deeper the trie, the more nodes are created. Each
node is 1,049 bytes (1KB for the lookup array plus aux-
iliary data). Since the Aho-Corasick algorithm builds an
automaton that goes as deep as the pattern length, the
memory usage of ClamAV’s structure would be unac-
ceptably large because some patterns in the database are
as long as 2KB.

ClamAV modifies the Aho-Corasick algorithm so that
the trie is constructed only to some maximum height,
and all patterns beginning with the same prefix are stored
in a linked list under the appropriate trie leaf node.
ClamAV has the further restriction that all pattern lists
must be stored at the same trie level. This restriction sig-
nificantly simplifies trie construction and pattern match-
ing, but due to this restriction, the shortest pattern length
dictates the maximum trie height. Since the shortest pat-

2552540 1 ...2552540 1 ...

2552540 1 ...

...

Leaf Node
Patterns

...Fail

Figure 3: A fragment of the ClamAV trie structure. Success
transitions are solid lines. Failure transitions are dashed lines.

tern is only two bytes long, ClamAV can only build a trie
with two levels. Figure 3 shows a fragment of a trie built
by the ClamAV algorithm.

ClamAV takes the following steps to construct a trie:

1. Read the next pattern from the virus database.
2. Traverse the trie to find an appropriate node to add

the pattern to, creating new levels as needed until
the maximum trie height is reached (this step sets
up success transitions).

3. Add the pattern to the linked list inside a leaf node.
4. Process all nodes of the trie by depth (level-order

traversal), and set up all failure transitions.

After the trie is constructed, ClamAV is ready to check
whether an input matches any of the patterns in the trie.
For each character read, ClamAV follows the trie tran-
sition and if a leaf node is encountered, all patterns in-
side the linked list are checked using sequential string
comparisons. This process continues until the last input
character is read, or a match is found.

3.2 Oyster Design
Our kernel-based virus scanner module is called by the
file system to perform scanning every time files are read
for the first time, created, or modified. Since each file
contains one or more pages, and there are many files be-
ing accessed simultaneously, two of the major require-
ments for Oyster were speed and efficiency. In addition,
since the number of viruses constantly grows, the virus
scanner must be scalable. Unfortunately, ClamAV did
not prove to be scalable. Its performance gets linearly
worse as the number of patterns increase (see Section
6 for a detailed performance comparison). In Section
3.2.1 we explain the scalability problems with ClamAV.
In Sections 3.2.2 through 3.2.4 we describe changes we
made to the ClamAV data structures and algorithms. In
Section 3.2.5 we describe the Oyster API for other ker-
nel modules.
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3.2.1 Virus Database and Scalability
The primary issue that limits ClamAV’s scalability is
the restriction that all pattern lists must be stored at the
same trie level. This restriction forces the maximum
trie height to be two. With the maximum level of two,
and with each node holding 256 transitions, it would ap-
pear that this data structure should be scalable for up to
2562 = 65536 patterns, but this approximation is correct
only if virus signatures consist of uniformly distributed
random characters. However, virus signatures are nei-
ther random nor uniformly distributed.

Figure 4 shows the distribution of one-character pre-
fixes in the ClamAV’s database. Just 25 out of 256 one-
character prefixes account for almost 50% of all prefixes.
The distribution of two character prefixes is not random
either. There are 6,973 unique two-character prefixes.
10% of those prefixes account for 57% of all patterns.
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Figure 4: A histogram showing the one-character prefix
distribution of ClamAV’s database with 19,807 viruses (256
unique prefixes).

This high clustering of patterns means that there are
some leaf nodes in the trie that contain linked lists with
a large number of patterns. Since all of these patterns
are scanned sequentially, performance suffers whenever
such a node is traversed during file scanning. To have
acceptable performance levels with large databases, the
ClamAV data structures and algorithms had to be mod-
ified to minimize the number of times that patterns in
leaf nodes were scanned and to minimize the number of
patterns stored in each list.

Our modifications to the ClamAV data structures and
algorithms are designed to meet the following three
goals: (1) improve scalability and performance, (2) min-
imize memory usage and support a maximum trie height
restriction so that an upper bound on memory usage can
be set, and (3) allow the administrator to configure the
system to trade-off memory vs. speed.

3.2.2 Variable Height Trie
To improve performance and scalability for large
databases, we redesigned the ClamAV data structures to
support trie heights greater than two. With each addi-
tional level, we add an additional 256-way fan-out for
the trie, thus reducing the probability that leaf nodes will

be scanned, which in turn improves performance. Pat-
terns that are shorter than the maximum trie height or
contain a wildcard character at a position less than the
maximum trie height must be added to the linked lists in
the intermediate trie nodes. Such nodes can contain both
transitions to the lower level as well as patterns. We will
use “?” to denote a single wildcard character. Figure 5
shows a trie with a height of four (plus leaf nodes). The
trie contains patterns beginning with ASCII characters
〈254, 0, 0, 79〉 (node 8). It also contains patterns that be-
gin with 〈0, 0, ?〉 (node 3), as well as patterns beginning
with 〈0, 0, 123, 255〉 (node 7).

2552540 1 ...2552540 1 ...

2552540 1 ...

L1

2552540 1 ...

Leaf Node
Patterns

Leaf Node
Patterns

...1230 1 ...

2552540 1 ...

Patterns
L2

L3 ...790 1 ...

Root

Node1

Node3

Node2

Node4

Node5 Node6

Node7 Node8

L0

Figure 5: A trie with four levels (only success transitions are
shown). Patterns beginning with characters 〈0, 0, ?〉 are stored
inside node 3, which contains both patterns and transitions.

The trie depicted in Figure 5 has two problems. The
first problem is memory usage. If a pattern can be
uniquely identified by a two-character prefix, then there
is no need to store it at the maximum trie height level
since a lot of memory would be used due to the large
node size (each node is over 1KB). Our solution stores
the pattern at the lowest possible level as soon as a
unique prefix for this pattern is found.

The second problem is more involved. Suppose we
have two patterns 〈0, 0, ?, 1〉 and 〈254, 0, 0, 79, 10〉. The
first pattern is stored inside node 3 in Figure 5. This
pattern cannot be stored at a higher level because a
transition over the wildcard is not unique. The sec-
ond pattern is stored inside node 8. Now suppose that
we have an input string 〈254, 0, 0, 79, 1〉. The automa-
ton will start transitioning through the right hand side
of the trie: root node, node 2, node 4, node 6, and fi-
nally node 8. At this point, the last input character “1”
will be matched against the last character of the pat-
tern 〈254, 0, 0, 79, 10〉, and the match will fail. How-
ever, while traversing the right hand side of the trie,
the characters 〈0, 0, 79, 1〉 match the pattern stored in-
side node 3, but we never visited this node to detect the
match. More formally, if we have two patterns with
unique prefixes P1[1..m] and P2[1..n], m > n, and
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Figure 6: Operation of the addpatterns function.

P1[j..k] = P2[1..n], where j ≥ 2 and k ≤ m, then
the patterns with prefix P2 must be scanned as soon as
character k is read. We call this situation a collision.

3.2.3 Improving Memory Usage
To store patterns at the lowest possible level, we modi-
fied the ClamAV trie construction algorithm. Instead of
storing the patterns in the trie as soon as they are read
from the database, we store them in an array. We sort
this array lexicographically by comparing pattern pre-
fixes of length equal to the maximum trie height. After
the patterns are sorted, each pattern is assigned an ID
that is equal to the pattern’s offset in the sorted pattern
array. This sorting enables Oyster to conveniently iden-
tify all patterns with some unique prefix P by specifying
start and end offsets into the sorted array.

We then proceed with the trie construction by call-
ing our addpatterns(node, start offset,
end offset) function, where node is the current
node in the trie, start offset and end offset are offsets
into the sorted pattern array that identify the range of pat-
terns to add to the node. To begin trie construction, we
call addpatterns, passing it the root node and the en-
tire range of patterns as arguments. The addpatterns
function operates as follows:

1. If the maximum trie height is reached, add all pat-
terns in the range to the current node and return.

2. If the range contains only one pattern, add this pat-
tern to the current node, and return.

3. Add to the current node all patterns of length equal
to the current height and all patterns that have a “?”
character at the current height. If there are no more
patterns left, return.

4. Otherwise, the range still contains patterns. For
each character 0 ≤ i ≤ 255, find the range of pat-
terns that have character i in the position equal to
the current height, create transitions for i inside the
current node, and recursively call the function with
the new range and new node. The maximum re-
cursion depth is equal to the maximum trie height.
The kernel has a limited stack size, but because our
recursive function is bounded by a small maximum
trie height, there is no danger of stack overflow.

The Figure 6 shows the trie construction process
for the patterns {aaax, aaby, acdz}. In step 1,
addpatterns is called with a node and the three pat-
terns in the range. Since there is more than one pat-
tern in the range, addpatterns creates a transition
for the character a, and recursively calls itself with the
same range, but using the node at the next level down.
In step 2, the next characters from the patterns are com-
pared. Two transitions for characters a and c are set up
and the function calls itself recursively twice, once with
the range containing the patterns {aaax, aaby}, and once
with {acdz} (step 3). In step 4, the pattern “acdz” is
added to the current node since the range contains only
one pattern, and the remaining patterns get added to the
next level in step 5. Notice that the pattern “acdz” was
added as soon as the unique prefix “ac” was found for
this pattern (step 4).

Since the pattern array was presorted, whenever pat-
terns (delimited by start offset and end offset) get added
to a node, they begin with the same prefix, and there-
fore have sequential pattern IDs. This reduces memory
usage. Instead of creating a linked list of patterns, we
simply add a pattern-range structure to the node. The
pattern-range structure has three members: (1) start off-
set, (2) end offset, and (3) the level of the trie where the
range is stored. The level member of this structure deter-
mines how many characters from all of the patterns are
already matched by the trie prefix.

The trie construction algorithm described above min-
imizes memory usage by storing each pattern at the low-
est possible level. The algorithm maintains the maxi-
mum trie height restriction to enforce an upper bound
on memory usage. In addition, we provide a recom-
mended minimum height configuration parameter to al-
low a trade-off between speed and memory usage. Even
if a pattern can be uniquely identified by a single char-
acter prefix, it is not added to the trie until the rec-
ommended minimum height is reached. Short patterns
or patterns with wildcard characters are still stored at
levels below the recommended minimum trie height.
Increasing the recommended minimum height parame-
ter increases memory usage. This increase, however,
could improve performance because leaf nodes of the
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trie would be scanned less frequently due to the larger
trie height (see Section 6). Note that the minimum trie
height parameter should not be set too high. In our tests,
a minimum height of three proved to be scalable with
databases of up to 128K virus definitions. A combina-
tion of minimum and maximum heights allows for flex-
ibility in tuning performance and memory usage.

3.2.4 Collision Detection and Avoidance
Collisions are detected using a simple procedure. We
start processing every node in the trie in a level-order
traversal; i.e., process all nodes on level n before pro-
cessing nodes on level n + 1. For every success transi-
tion in a node A, we traverse the trie as if it were a failure
transition. We look at a node, say node B, pointed to by
the failure transition. If node B has pattern ranges stored
under it, then there is a collision. Whenever a collision
is detected, all pattern ranges from node B are copied to
node A. The level member of the pattern range struc-
ture, which identifies the number of characters matched
so far, is not modified during the copy operation.

Preferably, we wish to avoid collisions whenever pos-
sible. If too many collisions occur, then instead of
having a lot of patterns stored in the linked lists, we
will have many pattern ranges stored. To avoid colli-
sions, we exploit two facts: (1) the trie constructed by
the addpatterns function attempts to add patterns
as soon as possible before the maximum trie height is
reached, and (2) if the maximum trie height is greater
than one, failure transitions from a leaf node can never
point to another leaf node. Instead of copying pattern
ranges as soon as a collision is detected, we first attempt
to push from both nodes A and B down the trie. This
reduces the probability of a collision by 2562 times if
ranges from both A and B can be pushed down, or by
256 times if only one of the ranges can be pushed down.
The only time pushing down is not possible is if ranges
for either A or B contain short patterns or have patterns
with a wildcard character in the position equal to the
level of the node. If a pattern is already stored on the leaf
node, we are guaranteed that this node’s pattern ranges
will not collide with any other node.

Figure 7 shows a final trie constructed by our algo-
rithm. Patterns beginning with characters 〈0, 254〉 are
stored at level two (node A) because either they are short
or they have a wildcard character in position two. These
patterns are copied by node B due to a collision. The rest
of the patterns are stored under leaf nodes.

To summarize, Oyster takes the following steps to
construct a trie:

1. Read all patterns from the virus database and store
them in a sorted array.

2. Call the addpatterns function to build a trie and
initialize success transitions.

2552540 1 ...

2552540 1 ...

2552540 1 ...2552540 1 ...

2552540 1 ...

Leaf Node

Leaf Node

Pattern Ranges

Pat. Range

Pat. Range

Ranges
Inherited

Node B

Node A

L0

L1

L2

L3

Figure 7: Final trie structure for Oyster. Only success transi-
tions are shown.

3. Execute the pattern-collision detection and avoid-
ance procedure.

4. Set up the failure transitions.

3.2.5 Oyster File System Integration
Oyster provides a simple interface to the file system
to perform scanning. It exports a scanbuf function
which is responsible for scanning a buffer for viruses.
The scanbuf function supports two modes of scan-
ning: full mode, which scans for all patterns, and regular
mode, which scans all regular (non multi-part) patterns.
The scanbuf function takes the following five param-
eters: (1) a buffer to scan, (2) the buffer length, (3) the
buffer’s position in the file, (4) an Oyster state structure,
and (5) various flags that determine the scan mode, state
handling, and other aspects of the operation. The return
code of this function indicates whether the buffer is clean
or infected.

The state structure enables Oyster to continue scan-
ning the next buffer right from where the previous call
to scanbuf left off. The state structure contains the
following four members: (1) a linked list of partially-
matched patterns represented by the pattern ID and the
position of the last character successfully matched, (2)
a node ID identifying the trie node where the previ-
ous call left off, (3) a structure to keep track of multi-
part pattern matches, and (4) a virus database checksum,
which we use to check the validity of the state against
the currently-loaded database.

We keep only one state structure for each opened in-
ode (file on disk). Multiple processes that read or write
to the same file share a single state structure. The size
of the state depends on the number of partially-matched
viruses, and is usually around 512 bytes. We do not ex-
port the state structure to external modules. Instead, we
provide functions to allocate and deallocate the struc-
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ture, as well as functions to serialize and deserialize it so
that external modules can store the state persistently.

To load the Oyster module into the kernel, we specify
the database files to load as well as the minimum and
the maximum trie heights parameters. After the Oyster
module is loaded, external file system modules can use
Oyster to perform on-access scanning.

3.2.6 Summary of Improvements
Our Oyster scanner improves on ClamAV in two ways:
performance and scalability, and kernel integration.

We allow trie heights larger than two, which improves
performance logarithmically. Oyster can limit the max-
imum tree height, to minimize memory usage and im-
prove scalability. We additionally improve performance
by allowing pattern scanning to terminate at intermedi-
ate trie nodes instead of having to go all the way down
to leaf nodes.

ClamAV was designed for scanning whole files in the
user level, making assumptions that are unsuitable for
running inside kernels. For example, ClamAV scans
entire files sequentially, 132KB at a time. Oyster, on
the other hand, uses data units that are native to the
kernel, scanning one page at a time (4KB on IA-32
hosts). Finally, whereas ClamAV scans whole files se-
quentially, Oyster scans individual pages as they are be-
ing accessed—regardless of the order in which they are
accessed. This improves performance and guarantees
that no infected data is ever leaked. We introduced a
state structure to incrementally record the partial scan
status of individual pages, and also found that this struc-
ture improves performance by up to 68% as compared to
ClamAV.

4 The Anti-virus File System
We designed Avfs to achieve the following three goals:
Accuracy and high-security: We achieve this by de-

tecting viruses early and preventing viruses from
corrupting the file system.

Performance: We perform partial scanning and avoid
repetitive scanning.

Flexibility and portability: Being a stackable file sys-
tem, Avfs is portable. Moreover, user-oriented fea-
tures such as forensics and versioning provide flex-
ible options for deployment.

Avfs is a stackable file system for Linux that inter-
faces with Oyster, as described in Section 3, to provide
virus protection. The advantages of being a stackable
file system include transparent operation and portability
to a variety of other file systems. A state-oriented ap-
proach allows Avfs to perform partial and non-repetitive
scanning.

4.1 State-Oriented Design

There are two types of state involved in providing on-
access virus protection in our system. The first allows
safe access to files through the read and write meth-
ods by tracking patterns across page boundaries. This
state is computed by Oyster and is maintained by Avfs.
The second type of state is used to avoid repetitive scan-
ning and is stored persistently as part of a file by Avfs.

The Oyster scanning module can partially scan files.
Oyster can scan one part, say b1 of a buffer B = b1 + b2

and compute a state s1 at the end of this scan. State s1

and the second part of the buffer, b2, can be passed to
Oyster and the effect of these two scans would be as if
buffer B was scanned all at once. Avfs maintains this
Oyster state for each file in the file system. When the
file is being accessed, this state is kept in memory as part
of the in-memory inode structure of the file. We record
this state after each page scan, thereby overwriting the
previous state.

We do not maintain state for individual pages because
the current stackable file system infrastructure has no
provision for it. Also, it might be expensive in terms
of space utilization. We could store all the state for mul-
tiple pages in a single structure, but with increasing file
sizes, maintaining this structure becomes expensive.

Our state design divides a file logically into two parts:
one scanned and the other unscanned. Along with this
state, Avfs also records the page index to which this
state corresponds, so that Avfs can provide subsequent
pages for scanning in the correct order. When a file is
closed, we store this state persistently so that we can re-
sume scanning from where we left off. We use an auxil-
iary state file for each file in a separate hidden directory
under the Avfs mount called the state directory. Avfs
traps the lookup and readdir operations to prevent
access to this directory and its contents by users. The
state file’s name is a derivative of the inode number of
the corresponding file. This facilitates easy access of the
state file because the inode number of a file can be easily
obtained and thus the state file name can be easily gener-
ated. When a file is closed, the entire state (Oyster state
+ page index) is written into its state file.

In addition to the Oyster state, Avfs has some state of
its own which allows it to mark files clean, quarantined,
or unknown. These file states are stored as flags in the
main file’s on-disk inode structure. To quarantine a file
we change its permissions to 000, so that non-root users
could not access it. Also, if the underlying file system is
Ext2/3, we set the immutable flag so that even root could
not modify the file without changing its attributes.
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Figure 8: Typical operations on files and their processing in
Avfs.

Figure 8 illustrates a few operations and their effects
on a file under Avfs in a few simple steps:

1. During the first open on an unknown file, there
is no state associated and the operation proceeds
normally.

2. On a read of page 1 of the file, the data is scanned
and a state S1 is computed by Oyster at the end of
this scan. This state corresponds to the first page.

3. Reading to the next page of the file makes use of
the previous state S1 for scanning.

4. When a file is closed, the state needs to be stored
persistently. A serialized form of the state is stored
into an auxiliary state file.

5. Another open on the file causes the state to be de-
serialized from the state file and brought back into
memory for further scanning.

6. Further sequential reads of the file make use of the
previous state and ultimately the file gets scanned
completely.

7. If the file has been scanned completely, then dur-
ing its close, the latest state is written to the state
file and the file is marked clean. A clean file is
not scanned during subsequent accesses unless it is
modified.

This state-oriented design provides a basis for a vari-
ety of features, described next.

4.2 Modes of Operation
We designed two scanning modes: a full mode that scans
for all patterns in Oyster’s virus database and a regu-

lar mode that scans for regular patterns only. We also
designed two user-oriented forensic modes for differ-
ent classes of users and sites of deployment. These two
forensic modes are called Immediate and Deferred. Avfs
can be mounted with any combination of scanning and
forensic modes using mount-time options. We describe
the two scan modes in Section 4.2.1 and the forensic
modes in Section 4.2.2

4.2.1 Scan Modes
Regular and multi-part (polymorphic) patterns are ex-
plained in detail in Section 3.1. In full mode, Oyster
scans input for all the patterns (regular and multi-part)
in the database, making use of its full trie structure.
Scanning multi-part patterns can be expensive in terms
of speed because they can span several pages of a file.
Writes to random locations in a file can cause repetitive
scanning of the whole file. In regular mode, Oyster scans
input only for regular patterns. The full mode is accurate
in the sense that it scans the input for all patterns (in-
cluding multi-part patterns using their virus definitions)
in the database. The regular mode trades-off accuracy
for speed by scanning only for regular patterns.

The semantics of the full mode are different for un-
known and clean files. For unknown files during se-
quential reads, we always have state at the end of the
previous page and as we progress toward the end of the
file it gets gradually scanned and finally is marked clean.
If we have random reads from different parts of the file,
we adopt a different strategy. Random reads ahead of
the current scanned page trigger a scan of the intermedi-
ate pages. For random reads before the current scanned
page, we simply ignore scanning because that part of the
file has already been scanned.

Sequential writes are dealt with in the same way
as sequential reads, but the case of random writes is
slightly different. Multi-part patterns of the form P =
{p1, p2, p3, ... , pn} are hard to detect because we could
have the following scenario. Consider a multi-part pat-
tern P = {p1, p2, p3} and an empty file. The first write
could produce p2 on page 2. Our scanner would scan the
file until the end of page 2 and find that the file is clean.
The next write could be p3 on page 3. The final write
of p1 to page 1 would complete the whole virus in the
file. To avoid this, the state maintained after the write to
page 3 should be invalidated during the write to page 1
and the whole file should be scanned to detect the virus.

We implemented this technique which scans the
whole file for multi-part patterns using the multi-part
trie structure of Oyster on every random write, but it
proved to be inefficient because some programs like ld
write randomly around the two ends of the file and hence
cause a number of rescans over the entire length of the
file. Our current implementation, therefore, has a full-
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scan-on-close flag on the file’s inode which, when set,
causes the file to be scanned completely for multi-part
viruses when the file is closed. This flag is set if there are
random writes before the current scanned page, and the
page is scanned only for regular patterns using a cush-
ioned scan implementation. A cushioned scan works
by extending the concerned page with sufficiently large
buffers of data on either side to guarantee that patterns
are detected across page boundaries. The size of a cush-
ion buffer is equal to the length of the longest pattern
available in Oyster’s database (currently 2,467 charac-
ters). A cushioned scan is shown in Figure 9.

Total scan for page 2

Maximum pattern length − 1

current page cushioncushion

Page 3Page 2Page 1 Page n

Figure 9: A cushioned scan implementation for viruses
spread across page boundaries

We have a configurable parameter max-jump that de-
cides when the full-scan-on-close flag should be set.
Forward random writes to pages within max-jump from
the current scanned page cause intermediate pages to
be scanned for all viruses, but forward writes to pages
greater than max-jump cause only the regular patterns to
be scanned for, and the full-scan-on-close flag is set. If
this flag is set, access to the file is denied for all other
processes except the current process performing the ran-
dom writes. When the file is closed, the state is stored
persistently in the file’s state file. If the state indicates
that the last page was scanned, the file is safely marked
clean; otherwise, the state represents the last scanned
page of the file.

After a file is marked clean, new reads do not result in
additional scans. Appends to a clean file are dealt with
in the same way as sequential writes for unknown files
(files that are not marked clean). Writes to the middle
of the file are handled in a similar fashion as writes to
unknown files.

The regular mode is almost identical to the full mode
except that it scans the input only for regular patterns.
Reads to unknown or clean files, as well as sequential
writes, are treated in the same way as in full mode. Ran-
dom writes past the current scanned page force scan-
ning of intermediate pages, and backward writes use
cushioned scanning. The value of the maximum pat-
tern length is currently less than a page size, so cush-
ioned scanning adds a maximum overhead of scanning
one page on either side. This overhead is less than in full
mode because in full mode we have to scan the entire file
to detect multi-part viruses. For large files, full mode is
slower than the regular mode. Regular mode is useful
in cases where random read and write performance is

important. Full mode should be used when detection of
multi-part patterns is required.

4.2.2 Forensic Modes
If a process writes a virus into the file system, the pro-
cess should be notified of this behavior as early as pos-
sible. Also, if a process is reading from an infected
file, then the read must not succeed. These requirements
motivated the development of an immediate mode that
would not let viruses to be written to disk and return an
error to the process so that it can take remedial action.
Immediate mode is especially suited to a single-user en-
vironment where protection from viruses is the prime
requirement.

In addition to the immediate mode, we developed an-
other mode called the deferred mode which defers the
error notification and records malicious activity. Such a
mode is suitable for large enterprise servers where sev-
eral users access data concurrently. In addition to on-
access virus protection, this mode provides (1) data con-
sistency by backing up files, and (2) a mechanism to
trace processes that attempt to write viruses into the file
system. We keep evidence such as process information,
time of attack, and infected files, so that the incident can
be investigated later.

When Avfs is mounted over an existing file system,
it is possible for the underlying file system to already
contain some virus-infected files. Such existing virus-
infected files are detected during reads from the file.
In this case, the file is quarantined, so that no process
could access it. Another possibility of a virus infection
is through a process that tries to write a virus into the file
system. In the immediate mode, these writes are trapped
in the Avfs layer itself and are not allowed to propagate
to the lower file system. Permission for such a write is
denied and the offending process is immediately noti-
fied of the corresponding error. The file remains con-
sistent up to the last successful write to the file. The
file, however, may have multi-part viruses or viruses that
span over page-boundaries. A multi-part virus is not
detected until all of its parts are discovered in the cor-
rect sequence in a file. At the same time, a file cannot
be called clean if it contains even one part of a multi-
part virus. Hence, if most parts of a multi-part virus are
written and the virus is detected on writing the last part,
the file could still be corrupted due to the previous virus
parts. If a regular virus spans across page boundaries,
only the last write to the page that completes the virus is
denied.

Deferred mode operates in the same way as immedi-
ate mode for existing virus-infected files. These files are
simply quarantined and access to them is denied. At-
tempts to write viruses, however, are treated differently.
Files can have multiple instances open simultaneously.
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An open on a file causes an instance to be created and
a close on that instance causes the instance to termi-
nate. We define a session to be the duration between the
first open of the file and the last close of the file. We
back up a file during the first write of a session. We keep
this backup in case a virus is created in the course of this
session. In such a situation, we revert to the backup and
restore the file to a consistent state. Here, we have only
one version of the file which prevents us from reverting
to versions more than one session old. If some parts of
a multi-part virus are written over several sessions, we
cannot revert to totally clean versions (without any part
of the virus) because we cannot detect such a virus un-
til all its parts are written. With multiple file versions,
however, this problem is easily solved.

When an attempt to write a virus is detected, we
record the time of the event and the process identifier
(PID) of the offending process. We do not return an er-
ror immediately to the process. Instead, we lead it to
believe that the write was successful and allow it to pro-
ceed writing. However, we prevent read access to the file
for the offending process, so that it cannot read the virus
it had written. In addition to that, we also deny all ac-
cess (read, write, open) to the file for all other processes.
On close of the session, we rename the infected file to
a new name with the recorded PID and time stamp as
an evidence of the offense. Then, we rename the saved
backup to the original name so that data-consistency is
ensured. The saved evidence file can be used to launch
an investigation into the incident.

5 Related Work
There are several anti-virus systems available today.
Most of these systems are commercial products: Syman-
tec’s Norton Antivirus [18], McAfee Virusscan [13],
Sophos [17], Anti-Virus by Kaspersky Lab [9], Com-
puter Associates’s eTrust [4], and others. To protect
trade secrets, little information is released about their
internals. Their development is closed, and there is no
opportunity for peer review. Although the internals of
these products are trade secrets, advertised information
and white papers suggest their general structure. Most
of the commercial scanners detect viruses using virus
signature databases. These scanners boast large virus
databases ranging anywhere from 65,000 to 120,000 pat-
terns, which have been built over long periods. They also
use heuristic engines for scanning. The heuristic engines
eliminate files that cannot contain viruses, and scan only
the suspicious ones. Such heuristics typically include
identifying executable file types, appropriate file sizes,
and scanning only certain regions of files for viruses.

Some commercial scanners offer real-time virus pro-
tection. Real-time protection involves scanning files for
viruses when they are used. This is done by intercepting

the open, close, or exec system calls and scanning
entire files when these system calls are invoked. Scan-
ning during an open system call detects a virus only if
the file is already infected. If a virus is not present dur-
ing the open, but is written into the file after the open
operation, on-open scanning does not detect it. This
is the reason most real-time scanners scan for viruses
on close of the file as well. This scheme has three
drawbacks. First, viruses can be detected only after they
have been written to the file. If the file cannot be re-
paired, critical data cannot be restored. Second, multi-
ple processes can access a virus in a file before the file
is scanned during close. Third, scanning files on both
open and close results in scanning them twice.

ClamAV [11] is a open-source system which forms
the basis of our scanning engine. ClamAV maintains an
up-to-date virus-definition database; it has been adopted
as the primary virus-scanner in many organizations and
is the basis for several open-source projects.

Dazuko is a kernel module that provides third-party
applications an interface for file access control [6].
Dazuko was originally developed by H+BEDV Daten-
technik GmbH, but has been released as free software
to encourage development and to enable users to com-
pile the module into their custom kernels. Dazuko in-
tercepts the open, close, and exec system calls.
It passes control to virus-scanners during these system
calls to perform on-access (on-open, on-close, on-
exec) virus scanning. Clamuko [11] (the on-access
scanner from ClamAV) and H+BEDV [7] are two virus
scanners that use Dazuko. One disadvantage of us-
ing systems like Dazuko is that its kernel module has
to communicate with user-level virus scanners, slowing
performance. Sockets or devices are used for communi-
cation, so data also has to traverse protocol layers. Fi-
nally, data-copies have to be performed between the ker-
nel and the user-level.

The Internet Content Adaptation Protocol (ICAP)
[8] is a protocol designed to off-load specific Internet-
based content to dedicated servers, thereby freeing up
resources and standardizing the way features are imple-
mented. ICAP servers focus on providing specific func-
tionality such as spam filtering or virus scanning. The
downside of this scheme is performance: data is trans-
fered over the network to the virus-scanning server.

6 Evaluation
We evaluated the performance of Avfs under a variety of
system conditions by comparing it to other commercial
and open-source anti-virus systems.

All benchmarks were performed on Red Hat Linux
9 with a vanilla 2.4.22 kernel running on a 1.7GHz Pen-
tium 4 processor with 1GB of RAM. A 20GB 7200 RPM
Western Digital Caviar IDE disk was used for all the ex-
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periments. To ensure cold-cache results, we unmounted
the file systems on which the experiments were con-
ducted between successive runs. To reduce I/O effects
due to ZCAV, we located the tests on a partition toward
the outside of the disk that was just large enough for the
test data [5]. We recorded the elapsed, system, and user
times for all tests. We computed the wait time, which
is the elapsed time minus the CPU and user times used.
Wait time is primarily due to I/O, but other factors such
as scheduling can affect it. Each test was run at least
10 times. We used the Student-t distribution to compute
95% confidence intervals for the mean elapsed, system,
and user times. In each case the half-widths of the confi-
dence intervals were less than 5% of the mean. The user
time is not affected by Avfs because only the kernel is
changed; therefore we do not discuss user time results.

In Section 6.1 we describe the configurations used for
Avfs. Section 6.2 describes the workloads we used to
exercise Avfs. We describe the properties of our virus
database in Section 6.3. In Section 6.4 we present the
results from an Am-Utils compile. Section 6.5 presents
the results of Postmark. Finally, in Section 6.6 we com-
pare our scanning engine to others.

6.1 Configurations
We used all the combinations of our scanning modes and
forensic modes for evaluating Avfs.

We used two scanning modes:
FULL: Scan for all patterns including multi-part ones.
REGULAR: Scan only for regular patterns.
Each scanning mode was tested with both of our

forensic modes:
IMMEDIATE: This mode returns an error to the process

immediately and does not allow malicious writes to
reach the disk.

DEFERRED: This mode backs up a file so it can be
restored to a consistent state after an infection and
provide information to trace malicious activity.

We used the default trie minimum height of three and
maximum of three for all tests, unless otherwise men-
tioned. A minimum height of three gave us the best
performance for all databases and a maximum height of
three gave us the best performance for databases of small
sizes like 1K, 2K, 4K and 8K patterns. We show later, in
Section 6.4, how the maximum height parameter can be
tuned to improve performance for large databases.

For commercial anti-virus products that support on-
access scanning, we ran the Am-Utils compile and the
Postmark benchmarks. Clamuko and H+BEDV are in
this category. Sophos and some other commercial virus
scanners do not support on-access scanning trivially, so
we compared the performance of our scanning engine to
these on large files using command line utilities.

6.2 Workloads
We ran three types of benchmarks on our system: a
CPU-intensive benchmark, an I/O intensive one, and one
that compares our scanning engine with anti-virus prod-
ucts that do not support on-access scanning.

The first workload was a build of Am-Utils [14]. We
used Am-Utils 6.1b3: it contains over 60,000 lines of C
code in 430 files. The build process begins by running
several hundred small configuration tests to detect sys-
tem features. It then builds a shared library, ten binaries,
four scripts, and documentation: a total of 152 new files
and 19 new directories. Though the Am-Utils compile
is CPU intensive, it contains a fair mix of file system
operations, which result in the creation of several files
and random read and write operations on them. For each
file, a state file is created and backups of files are cre-
ated in the deferred forensic mode. These operations of
the Am-Utils benchmark sufficiently exercise Avfs. We
ran this benchmark with all four combinations of scan-
ning and forensic modes that we support. This work-
load demonstrates the performance impact a user might
see when using Avfs under a normal workload. For this
benchmark, 25% of the operations are writes, 22% are
lseek operations, 20.5% are reads, 10% are open op-
erations, 10% are close operations, and the remaining
operations are a mix of readdir, lookup, etc.

The second workload we chose was Postmark [10].
Postmark simulates the operation of electronic mail
servers. It performs a series of file system operations
such as appends, file reads, directory lookups, creations,
and deletions. This benchmark uses little CPU, but is
I/O intensive. We configured Postmark to create 500
files, each between 4KB and 1MB, and perform 5,000
transactions. We chose 1MB as the file size as it was the
average inbox size on our large campus mail server. For
this configuration, 45.7% of the operations are writes,
31.7% are reads and the remaining are a mix of opera-
tions like open, lookup, etc. (We used Tracefs [2] to
measure the exact distribution of operations in the Am-
Utils and Postmark benchmarks.)

The third benchmark compares various user-level
command-line scanners available today with our scan-
ner. We scanned two clean 1GB files. The first file had
random bytes and the second file was a concatenation
of files in /usr/lib. The latter represents various ex-
ecutables and hence exercises various parts of the scan-
ning trie under more realistic circumstances than random
data. Overall, this workload exercises both scanning for
viruses and also loading the virus database. Note that the
Oyster module and its user-level counterpart have almost
identical code with the exception of memory allocation
functions (kmalloc vs. malloc) and some kernel spe-
cific data structures.
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Figure 10: Am-Utils results. The figure on the left shows results for all Avfs modes, ClamAV, and Ext3. The figure on the right
shows a detailed view for Avfs and Ext3 (note that the Y axis starts at 180 seconds).

6.3 Test Virus Databases

To evaluate the performance and the scalability of our
Oyster virus scanner, we had to generate test virus
databases with different numbers of virus signatures. To
generate a virus database with fewer than the 19,807 pat-
terns contained in the current ClamAV virus database,
we simply picked signatures at random from the origi-
nal database.

The generation of realistic larger databases was more
involved. The most straightforward approach was to
simply generate random virus signatures. However,
as described in Section 3.2.1, this approach would not
yield a representative worst-case virus database. Instead,
we obtained the following statistics from the existing
ClamAV virus database: (1) the distribution of all unique
four character prefixes, Dp; (2) the distribution of virus
signature lengths, Dl; (3) the percentage of multi-part
patterns in the database, Pm; and (4) the distribution of
the number of sub-patterns for each multi-part pattern,
Ds. The prefixes of length four were chosen because
this number was larger then the minimum trie height pa-
rameter in our experiments. To generate one signature,
we first determined at random whether the new signa-
ture will be a basic or a multi-part signature using the
percentage Pm. If the new signature is a multi-part sig-
nature, we determined the number of sub-parts based on
the distribution Ds, and then generated one basic pat-
tern for each sub-part. To generate a basic signature,
we randomly sampled from the distribution Dp to deter-
mine the prefix that will be used for this pattern; next,
we sampled from the distribution Dl to determine the
length of the signature. If the length is greater than four
bytes, the remaining characters are generated randomly.
The above process was repeated as many times as nec-
essary to generate a database of the desired size. For
our evaluation, we generated databases ranging from 210

to 217 (128K) signatures. We verified that the resulting
databases had distribution characteristics similar to the
current ClamAV database.

6.4 Am-Utils Results
Figure 10 shows the performance for the Am-Utils com-
pile benchmark using various database sizes. The left
hand side of this figure shows the results for four Avfs
modes, ClamAV, and Ext3. The right hand side of this
figure shows a detailed view for Avfs modes and Ext3.
Table 1 summarizes the Am-Utils benchmark results.

Ext3 Full Deferred ClamAV
Size Elapsed System Elapsed System Elapsed System
1K 196.9 42.4 207.7 52.1 225.4 81.5
4K 196.9 42.4 211.7 56.2 262.9 118.3

19.8K 196.9 42.4 225.5 69.7 433.5 289.3
64K 196.9 42.4 260.6 105.4 1052.8 908.8

128K 196.9 42.4 299.9 144.5 2077.4 1933.0
Overhead over Ext3 (%)

1K - - 5.5 22.8 14.5 92.2
4K - - 7.5 32.5 33.5 179.0

19.8K - - 14.5 64.3 120.2 582.3
64K - - 32.3 148.4 434.7 2043.4

128K - - 52.3 240.4 955.0 4459.0

Table 1: Am-Utils build times. Elapsed and System times
are in seconds. The size of 19.8K corresponds to the current
ClamAV database.

The Oyster scanner was configured to use trie heights
of three for both minimum and maximum trie height pa-
rameters. A minimum height of three gave us the best
performance for all databases and a maximum height of
three gave us the best performance for databases of small
sizes like 1K, 2K, 4K, and 8K patterns. We demon-
strate later in this section how the maximum height pa-
rameter can be varied to improve performance for large
databases.

All of the modes have similar overhead over
Ext3, with the slowest mode, FULL/DEFERRED, be-
ing 0.5–2.7% slower than the fastest mode, REGU-
LAR/IMMEDIATE. In the FULL/DEFERRED mode, the
elapsed time overheads over Ext3 varied from 5.5%
for a 1K pattern database to 52.3% for a 128K pattern
database, whereas the system time overhead varies from
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22.8% to 240.4%. Due to I/O interleaving, a large per-
centage increase in the system time does not result in
the same increase in elapsed time. The increase in the
elapsed time is almost entirely due to the higher system
time. This increase in system time is due to the larger
database sizes. The Oyster module proved to scale well
as the database size increased: a 128 times increase in
the database size from 1K to 128K patterns resulted in
elapsed time increase from 207.7 seconds to 299.9 sec-
onds, a merely 44.4% increase in scan times. For the
same set of databases, ClamAV’s elapsed time increases
from 225.4 seconds to 2,077.4 seconds—a 9.2 factor in-
crease in scan times.
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Figure 11: Am-Utils build times using the FULL/DEFERRED
mode with a 128K signature database.

Max Level Mem Usage ∆ Time Speed Gain
3 45MB 0s 0s
4 60MB −45s 45s
5 182MB −58s 13s
6 199MB −57.5s −0.5s

Table 2: Effect of the maximum trie height parameter on
speed and memory usage. The speed gain column shows the
speed improvement over the previous maximum trie level.

The scalability for larger databases can be further im-
proved by adjusting the minimum and maximum trie
height parameters. We configured Avfs to use the slow-
est mode, FULL/DEFERRED. The Oyster module was
configured to use a database of 128K virus signatures,
and a minimum height of three. We repeated the Am-
Utils benchmark with various maximum trie height pa-
rameters. Figure 11 shows the result of this experi-
ment. Table 2 summarizes improvements in speed and
increases in memory usage. A maximum height of five
proved to be the fastest, but a height of four provided
a reasonable increase in speed while using significantly
less memory than a height of five. A system administra-
tor has a lot of flexibility in tuning the performance of
the system. If speed is very important, then a maximum
trie height of five can be used. However, if the memory
availability is tight, then a maximum trie height of four
provides a reasonable performance improvement with a
smaller memory footprint than a height of five.

6.5 Postmark Results
Figure 12 shows the results of running Postmark with
on-access scanners: ClamAV, H+BEDV, and all four
modes of Avfs. It also shows the time taken for a Post-
mark run on Ext3.
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Figure 12: Postmark results. For Avfs, R represents REGU-
LAR mode, F FULL, I IMMEDIATE, and D DEFERRED.

Postmark is an I/O intensive benchmark, which cre-
ates a lot of files and performs read and write operations
on these files. The files are accessed at random, which
results in a file being opened and closed several times
during the benchmark.

When a file is created in Postmark, Avfs scans this file
and creates a state file for it. Once a state file is present,
no additional scanning is required during subsequent
reads. Since all the writes are appends, the state in the
state file is always valid and only the last page(s) ahead
of the current scanned page are scanned. ClamAV’s
scanner is called several times on the open and close
system calls to scan entire files, which contributes to its
overhead. The slowest mode of Avfs, FULL/DEFERRED,
takes about 252 seconds and Ext3 takes 150 seconds,
which is an overhead of 68%. For the same benchmark,
ClamAV takes 1,487 seconds—a factor of 9.9 slower.

H+BEDV has a heuristics engine that allows it to
determine if a file needs to be checked for viruses by
looking at the first few bytes in the file. This allows
H+BEDV to skip scanning entire files of types that can-
not be infected. Although it is possible to suppress
the heuristics engine of H+BEDV in the command-line
scanner, this option is not available in the on-access
scanner. Due to its heuristics engine, H+BEDV shows
almost identical performance to Ext3 with a 5% over-
head in elapsed time but the system time increases by a
factor of 5.9.

6.6 Scan Engine Evaluation
Our test consisted of scanning two large files, one with
random data and the other with data that contained exe-
cutable code from library files. None of the test files con-
tained any viruses so the files were completely scanned.

When a file is given to a command-line scanner for
scanning, it needs to set up the scanning trie before scan-
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ning can start. The time taken to set up this trie depends
on the size of the virus database, so we used the same
size database as the other scanner for Oyster. For ex-
ample, when comparing it to Sophos we used 86,755
patterns, because that is what Sophos reports as their
database size.
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Figure 13: File scan times for Oyster and ClamAV. The
database had 19,807 patterns.

Figure 13 compares the performance of ClamAV with
Oyster. We ran the benchmark for Oyster once with the
minimum and maximum heights set to two, and once
with the heights set to 3 and 4, respectively. The 〈2, 2〉
setting matches the ClamAV trie structure, and 〈3, 4〉 op-
timizes Oyster’s performance for this benchmark.

For the Oyster scanner configured with 〈2, 2〉, the
random file scan was 26 seconds slower, while the li-
brary file scan was 176 seconds faster than ClamAV. The
Oyster scanner was faster for the library scan because
the internal state structure maintains partially-matched
patterns between successive calls to the scanner. The
ClamAV scanner does not have such a structure. In-
stead, it rescans some of the text from the previous buffer
so that patterns that span multiple buffers are detected.
In a library file scan, ClamAV scanned a total of 6.2
billion patterns, while Oyster scanned 1.8% fewer pat-
terns. In the random file benchmark, ClamAV again
scanned 1.8% more patterns. Even though the Oyster
scanner scanned six million fewer patterns, the over-
head of maintaining the state, which includes additional
malloc calls and linked list operations, exceeded the
savings gained in scanning fewer patterns.

Increasing the trie height parameters to 〈3, 4〉 signifi-
cantly reduces the number of patterns scanned by Oys-
ter. For the random file benchmark, Oyster scanned 369
times fewer patterns. For the library benchmark, Oyster
scanned 52 times fewer patterns.

Figure 14 compares H+BEDV with Oyster. In this
benchmark, we ran the command-line scanner from
H+BEDV. We configured H+BEDV so that it scans all
input without the heuristics engine. H+BEDV is slower
with random input than with the library file. This sug-
gests that the commercial H+BEDV scan engine is op-
timized to scan executable content, possibly by using a
different scanning mechanism. The random file scan of
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Figure 14: File scan times for Oyster and H+BEDV. The
database had 66,393 patterns.

H+BEDV is 6.2 times slower than H+BEDV’s scan of
the library file. For 1GB of random input, Oyster is 56%
faster than H+BEDV. For a 1GB library file however,
Oyster is 3.2 times slower than H+BEDV.
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Figure 15: File scan times for Oyster and Sophos. The
database had 86,755 patterns.

Figure 15 compares Sophos, an optimized commer-
cial product, with Oyster. Oyster is slower by 97% for
random input and by 124% for the library file, suggest-
ing that Oyster can be further optimized in the future.

7 Conclusions
The main contribution of our work is that for the first
time, to the best of our knowledge, we have implemented
a true on-access state-oriented anti-virus solution that
scans input files for viruses on reads and writes.
• Avfs intercepts file access operations (including

memory-mapped I/O) at the VFS level unlike other
on-access systems that intercept the open, close,
and exec system calls. Scanning during read and
write operations reduces the possibility of a virus
attack and can trap viruses before they are written
to disk. In addition to providing data consistency by
backing up files, the forensic modes of operation in
Avfs provide means to track malicious activity by
recording information about malicious processes.

• Our Oyster scan engine improves the performance
of the pattern-matching algorithm using variable
trie heights, and scales efficiently for large database
sizes. State-based scanning in Oyster allows us to
scan a buffer of data in parts. This state-oriented
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design reduces the amount of scanning required by
performing partial file-scanning.

• By separating the file system (Avfs) from the scan-
engine (Oyster), we have made the system flexible
and extensible, allowing third-party virus scanners
to be integrated into our system.

7.1 Future Work

We plan to improve the Oyster scanning engine in a vari-
ety of ways. Oyster scans all files, even those that are not
executable. We plan to allow Oyster to scan for viruses
within only specific file types. For example, when scan-
ning a Microsoft Office document, Oyster will scan only
for macro viruses. Since some viruses can only occur
in certain segments of a file, it is not necessary to scan
for them in the rest of the file. We plan to integrate po-
sitional matching into Oyster, so that only relevant por-
tions of files are scanned. Also, we plan to scan for all
patterns on a leaf node of the scanning trie simultane-
ously instead of scanning for each pattern sequentially,
thereby improving the scan engines performance.

We plan to maintain Avfs state for more than one page
per file. These states can be used to scan for multi-part
patterns efficiently even during random writes. Our in-
vestigation will evaluate trade-offs between storing more
and less state information. We plan to add more forensic
features to the deferred mode, such as terminating the
offending processes, and storing the core dump of the
process along with other useful evidence of malicious
activity. We also plan to integrate a versioning engine
[12] with Avfs to support multiple levels of versioning.
We can keep track of changes to a file across several ver-
sions to provide more accurate forensics.

The Oyster scan engine can also be applied to generic
pattern matching. Rather than using a database of
viruses, Oyster could use a database of keywords. For
example, a brokerage firm could flag files for review by
a compliance officer. Other companies could flag key-
words related to trade secrets. We plan to investigate
what file system policies would be useful for such appli-
cations.
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