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Abstract

Linux is a popular operating system that is rapidly evolv-
ing due to being Open Source and having many developers.
The Linux kernel comes with more than two dozen file sys-
tems, all of which arenative: they access device drivers di-
rectly. Native file systems are harder to develop. Stackable
file systems, however, are easier to develop because they
use existing file systems and interfaces.

This paper describes a stackablewrapperfile system we
wrote for Linux, calledWrapfs. This file system requires
a single small kernel change (one likely to be incorporated
in future kernel releases), and can serve as a template from
which other stackable file systems can be written. Wrapfs
takes care of most interfacing to the kernel, freeing devel-
opers to concentrate on the core semantic issues of their
new file system. As examples, we describe several file sys-
tems we wrote using Wrapfs.

We also detail the implementation of key operations in
the Linux stackable vnode interface, and the change we
made to the Linux kernel to support stackable file system
modules. Though we have repeated this work for both
Linux 2.0 and 2.1/2.2, this paper will concentrate and re-
port results for the 2.1.129 kernel. The overhead imposed
by Wrapfs is only 5–7%.

1 Introduction

Most file systems fall into two categories: (1) kernel res-
ident native file systems that interact directly with lower
level media such as disks[11] and networks[16], and (2)
user-level file systems that are based on an NFS server such
as the Amd automounter[13].

Native kernel-resident file systems are difficult to de-
velop and debug because they interact directly with device
drivers, and require deep understanding of operating sys-
tems internals. User-level file systems are easier to develop
and debug, but suffer from poor performance due to the ex-
tra number of context switches that take place in order to
serve a user request.

We advocate a third category: kernel-resident stackable
file systems, that is based on theVirtual File System(VFS).
This model results in file systems with performance close to
that of native kernel-resident file systems, and development
effort matching that of user-level file systems. Such stack-
able file systems can be written from our templatewrapper
file system — Wrapfs. Wrapfs takes care of interfacing
with the rest of the kernel; it provides the developer with
simple hooks to modify or inspect file data, file names, and
file attributes. Wrapfs can be mounted on top of one or
more existing directories, and act as an intermediary be-
tween the user accessing the mount point and the lower
level file system it is mounted on. Wrapfs can then trans-
parently change the behavior of the file system as seen by
users, while keeping the underlying media unaware of the
upper-level changes.

1.1 The Stackable Vnode Interface

Wrapfs is implemented as a stackable vnode interface. A
Virtual Nodeor vnode(known in Linux as a memoryin-
ode) is a data structure used within Unix-based operating
systems to represent an open file, directory, device, or other
entity (e.g., socket) that can appear in the file system name-
space. A vnode does not expose what type of physical file
system it implements. Thus, thevnode interfaceallows
higher level operating system modules to perform opera-
tions on vnodes uniformly.

One notable improvement to the vnode concept isvn-
ode stacking[8, 14, 18], a technique for modularizing file
system functions by allowing one vnode interface to call
another. Before stacking existed, there was only a single
vnode interface; higher level operating system code called
the vnode interface which in turn called code for a specific
file system. With vnode stacking, several instances of the
vnode interface may exist and may call each other in se-
quence: the code for a certain operation at stack levelN
typically calls the corresponding operation at levelN − 1,
and so on.

Figure 1 shows the structure for a simple, single-level,
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Figure 1: A Vnode Stackable File System

stackable wrapper file system. System calls are translated
into vnode level calls, and those invoke their Wrapfs equiv-
alents. Wrapfs again invokes generic vnode operations, and
the latter call their respective lower level file system spe-
cific operations such as EXT2FS. Wrapfs can also call the
lower level file system directly, by invoking the respective
vnode operations of the lower vnode. It accomplishes that
without knowing who or what type of lower file system it
is calling.

The rest of this paper is organized as follows. Section 2
discusses the design of Wrapfs. Section 3 details Wrapfs’
implementation. Section 4 describes four examples of file
systems written using the Wrapfs template. Section 5 eval-
uates their performance and portability. We survey related
works in Section 6 and conclude in Section 7.

2 Design

The design of Wrapfs concentrated on the following:

1. Simplifying the developer API so that it addresses
most of the needs of users developing file systems us-
ing Wrapfs.

2. Adding a stackable vnode interface to Linux with min-
imal changes to the kernel, and with no changes to
other file systems.

3. Keeping the performance overhead of Wrapfs as low
as possible.

The first two points are discussed below. Performance is
addressed in Section 5.

2.1 Developer API

There are three parts of a file system that developers wish
to manipulate: file data, file names, and file attributes. Of
those, data and names are the most important and also
the hardest to handle. File data is difficult to manipulate
because there are many different functions that use them

such as read and write, and the memory-mapping (MMAP)
ones; various functions manipulate files of different sizes
at different offsets. File names are complicated to use not
just because many functions use them, but also because the
directory reading function,readdir , is a restartable func-
tion.

We created four functions that Wrapfs developers can
use. These four functions address the manipulation of file
data and file names:

1. encodedata: takes a buffer of 4KB or 8KB size (typ-
ical page size), and returns another buffer. The re-
turned buffer has the encoded data of the incoming
buffer. For example, an encryption file system can en-
crypt the incoming data into the outgoing data buffer.
This function also returns a status code indicating
any possible error (negative integer) or the number of
bytes successfully encoded.

2. decodedata: is the inverse function of
encode data and otherwise has the same be-
havior. An encryption file system, for example, can
use this to decrypt a block of data.

3. encodefilename: takes a file name string as input and
returns a newly allocated and encoded file name of any
length. It also returns a status code indicating either an
error (negative integer) or the number of bytes in the
new string. For example, a file system that converts
between Unix and MS-DOS file names can use this
function to encode long mixed-case Unix file names
into short 8.3-format upper-case names used in MS-
DOS.

4. decodefilename: is the inverse function of
encode filename and otherwise has the same
behavior.

With the above functions available, file system develop-
ers that use Wrapfs as a template can implement most of
the desired functionality of their file system in a few places
and not have to worry about the rest.

File system developers may also manipulate file at-
tributes such as ownership and modes. For example, a
simple intrusion avoidance file system can prevent setting
the setuid bit on any root-owned executables. Such a file
system can declare certain important and seldom chang-
ing binaries (such as/bin/login ) as immutable, to deny
a potential attacker from replacing them with trojans, and
may even require an authentication key to modify them. In-
specting or changing file attributes in Linux is easy, as they
are trivially available by dereferencing the inode structure’s
fields. Therefore, we decided not to create a special API for
manipulating attributes, so as not to hinder performance for
something that is easily accessible.
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2.2 Kernel Issues

Without stackable file system support, the divisions be-
tween file system specific code and the more general (up-
per) code are relatively clear, as depicted in Figure 2. When

NFS EXT2FS Specific (lower-1)

Generic (upper-1)VFS LAYER

Figure 2: Normal File System Boundaries

a stackable file system such as Wrapfs is added to the ker-
nel, these boundaries are obscured, as seen in Figure 3.
Wrapfs assumes a dual responsibility: it must appear to the
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Figure 3: File System Boundaries with Wrapfs

layer above it (upper-1) as a native file system (lower-2),
and at the same time it must treat the lower level native file
system (lower-1) as a generic vnode layer (upper-2).

This dual role presents a serious challenge to the design
of Wrapfs. The file system boundary as depicted in Figure
2 does not divide the file system code into two completely
independent sections. A lot of state is exchanged and as-
sumed by both the generic (upper) code and native (lower)
file systems. These two parts must agree on who allocates
and frees memory buffers, who creates and releases locks,
who increases and decreases reference counts of various
objects, and so on. This coordinated effort between the up-
per and lower halves of the file system must be perfectly
maintained by Wrapfs in its interaction with them.

2.2.1 Call Sequence and Existence

The Linux vnode interface contains several classes of func-
tions:

• mandatory: these are functions that must be im-
plemented by each file system. For example, the
read inode superblock operation which is used to
initialize a newly created inode (read its fields from
the mounted file system).
• semi-optional: functions that must either be imple-

mented specifically by the file system, or set to use
a generic version offered for all common file sys-
tems. For example, theread file operation can

be implemented by the specific file system, or it
can be set to a general purpose read function called
generic file read which offers read functional-
ity for file systems that use the page cache.
• optional: functions that can be safely left unimple-

mented. For example, the inodereadlink function
is necessary only for file systems that support sym-
bolic links.
• dependent: these are functions whose implementa-

tion or existence depends on other functions. For ex-
ample, if the file operationread is implemented us-
ing generic file read , then the inode operation
readpage must also be implemented. In this case,
all reading in that file system is performed using the
MMAP interface.

Wrapfs was designed to accurately reproduce the afore-
mentioned call sequence and existence checking of the var-
ious classes of file system functions.

2.2.2 Data Structures

There are five primary data structures that are used in Linux
file systems:

1. super block: represents an instance of a mounted file
system (also known asstruct vfs in BSD).

2. inode: represents a file object in memory (also known
asstruct vnode in BSD).

3. dentry: represents an inode that is cached in the Di-
rectory Cache (dcache) and also includes its name.
This structure is extended in Linux 2.1, and combines
several older facilities that existed in Linux 2.0. A
dentry is an abstraction that is higher than an inode.
A negative dentryis one which does not (yet) contain
a valid inode; otherwise, the dentry contains a pointer
to its corresponding inode.

4. file: represents an open file or directory object that is
in use by a process. A file is an abstraction that is one
level higher than the dentry. The file structure contains
a valid pointer to a dentry.

5. vm area struct: represents custom per-process vir-
tual memory manager page-fault handlers.

The key point that enables stacking is that each of the
major data structures used in the file system contain a field
into which file system specific data can be stored. Wrapfs
uses that private field to store several pieces of information,
especially a pointer to the corresponding lower level file
system’s object. Figure 4 shows the connections between
some objects in Wrapfs and their corresponding objects in
the stacked-on file system, as well as the regular connec-
tions between the objects within the same layer. When a
file system operation in Wrapfs is called, it finds the cor-
responding lower level’s object from the current one, and
repeats the same operation on the lower object.
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Figure 4: Connections Between Wrapfs and the Stacked-on
File System

Figure 4 also suggests one additional complication that
Wrapfs must deal with carefully — reference counts.
Whenever more than one file system object refers to a sin-
gle instance of another object, Linux employs a traditional
reference counter in the referred-to object (possibly with
a corresponding mutex lock variable to guarantee atomic
updates to the reference counter). Within a single file sys-
tem layer, each of the file, dentry, and inode objects for the
same file will have a reference count of one. With Wrapfs
in place, however, the dentry and inode objects of the lower
level file system must have a reference count of two, since
there are two distinct objects referring to each. These ad-
ditional pointers between objects are ironically necessary
to keep Wrapfs as independent from other layers as possi-
ble. The horizontal arrows in Figure 4 represent links that
are part of the Linux file system interface and cannot be
avoided. The vertical arrows represent those that are nec-
essary for stacking. The higher reference counts ensure that
the lower level file system and its objects could not disap-
pear and leave Wrapfs’s objects pointing to invalid objects.

2.2.3 Caching

Wrapfs keeps independent copies of its own data structures
and objects. For example, each dentry contains the com-
ponent name of the file it represents. (In an encryption
file system, for example, the upper dentry will contain the
cleartext name while the lower dentry contain the cipher-
text name.) We pursued this independence and designed
Wrapfs to be as separate as possible from the file system
layers above and below it. This means that Wrapfs keeps its
own copies of cached objects, reference counts, and mem-
ory mapped pages — allocating and freeing these as neces-
sary.

Such a design not only promotes greater independence,
but also improves performance, as data is served off of
a cache at the top of the stack. Cache incoherency
could result if pages at different layers are modified
independently[7]. We therefore decided that higher layers
would be more authoritative. For example, when writing
to disk, cached pages for the same file in Wrapfs overwrite
their EXT2 counterparts. This policy correlates with the
most common case of cache access, through the uppermost
layer.

3 Implementation

Each of the five primary data structures used in the Linux
VFS contains an operations vector describing all of the
functions that can be applied to an instance of that data
structure. We describe the implementation of these oper-
ations not based on the data structure they belong to, but
based on one of five implementation categories:

1. mounting and unmounting a file system
2. functions creating new objects
3. data manipulation functions
4. functions that use file names
5. miscellaneous functions

For conciseness, we describe the implementation of the
1–2 most important functions in each category. Readers are
referred to other documentation[2] for a description of the
rest of the file system operations in Linux, and to Wrapfs’s
sources for their implementation.

There are two important auxiliary functions in Wrapfs.
The first function,interpose , takes a lower level dentry
and a wrapfs dentry, and creates the links between them and
their inodes. When done, the Wrapfs dentry is said to be
interposedon top of the dentry for the lower level file sys-
tem. The interpose function also allocates a new Wrapfs in-
ode, initializes it, and increases the reference counts of the
dentries in use. The second important auxiliary function is
calledhidden dentry and is the opposite of interpose.
It retrieves the lower level (hidden) dentry from a Wrapfs
dentry. The hidden dentry is stored in the private data field
of struct dentry .

3.1 Mounting and Unmounting

The functionread super performs all of the important
actions that occur when mounting Wrapfs. It sets the opera-
tions vector of the superblock to that of Wrapfs’s, allocates
a new root dentry (the root of the mounted file system), and
finally calls interpose to link the root dentry to that of
the mount point. This is vital for lookups since they are
relative to a given directory (see Section 3.2). From that
point on, every lookup within the Wrapfs file system will
use Wrapfs’s own operations.

3.2 Creating New Objects

Several inode functions result in the creation of new in-
odes and dentries:lookup , link , symlink , mkdir ,
andmknod. The lookup function is the most complex
in this group because it also has to handle negative den-
tries (ones that do not yet contain valid inodes). Lookup is
given a directory inode to look in, and a dentry (containing
the pathname) to look for. It proceeds as follows:

1. encode the file name it was given using
encode filename and get a new one.
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2. find the lower level (hidden) dentry from the Wrapfs
dentry.

3. call Linux’s primary lookup function, called
lookup dentry , to locate the encoded file
name in the hidden dentry. Return a new dentry
(or one found in the directory cache, dcache) upon
success.

4. if the new dentry is negative, interpose it on top of the
hidden dentry and return.

5. if the new dentry is not negative, interpose it and the
inodes it refers to, as seen in Figure 4.

3.3 Data Manipulation

File data can be manipulated in one of two ways: (1) the
traditional read and write interface can be used to read or
write any number of bytes starting at any given offset in a
file, and (2) the MMAP interface can be used to map pages
of files into a process that can use them as normal data
buffers. The MMAP interface can manipulate only whole
pages and on page boundaries. Since MMAP support is vi-
tal for executing binaries, we decided to manipulate data in
Wrapfs in whole pages.

Reading data turned out to be easy. We set the fileread
function to the general purposegeneric file read
function, and were subsequently required to implement
only our version of thereadpage inode operation. Read-
page is asked to retrieve one page in a given opened file.
Our implementation looks for a page with the same offset
in the hidden file. If it cannot find one, Wrapfs’s readpage
allocates a new one. It proceeds by calling the lower file
system’s readpage function to get the page’s data, and then
it decodes the data from the hidden page into the Wrapfs
page. Finally, Wrapfs’s readpage function mimics some
of the functionality thatgeneric file read performs:
it unlocks the page, marks it as referenced, and wakes up
anyone who might be waiting for that page.

3.4 File Name Manipulation

As mentioned in Section 3.2, we use the call to
encode filename at every file system function that is
given a file name and has to pass it to the lower level file
system, such asrmdir . There are only two places where
file names are decoded:readlink needs to decode the
target of a symlink after having read it from the lower level
file system, andreaddir needs to decode each file name
read from a directory. Readdir is implemented in a simi-
lar fashion to other Linux file systems, by using a callback
function called “filldir” that is used to process one file name
at a time.

3.5 Miscellaneous Functions

In Section 3.3 we described some MMAP functions that
handle file data. Other than those, we had to imple-

ment three MMAP-related functions that are part of the
vm area struct , but only for shared memory-mapped
pages:vm open , vm close , andvm shared unmap.
We implemented them to properly support multiple
(shared) mappings to the same page. Shared pages have
increased reference counts and they must be handled care-
fully (see Figure 4 and Section 2.2.2). The rest of the
vm area struct functions were left implemented or
unimplemented as defined by the generic operations vec-
tors of this structure.

This implementation underscored the only change, al-
beit a crucial one, that we had to make to the Linux kernel.
The data structurevm area struct is the only one (as
of kernel 2.1.129) that does not contain a private data field
into which we can store a link from our Wrapfs vmarea
object to the hidden one of the lower level file system. This
change was necessary to support stacking.1

All other functions that had to be implemented reproduce
the functionality of the generic (upper) level vnode code
(see Section 2.2) and follow a similar procedure: for each
object passed to the function, they find the corresponding
object in the lower level file system, and repeat the same
operation on the lower level objects.

4 Examples

This section details the design and implementation of four
sample file systems we wrote using Wrapfs:

1. Lofs: is a loopback mount file system such as the one
available in Solaris[19].

2. Rot13fs: is a trivial encryption file system that en-
crypts file data.

3. Cryptfs : is a strong encryption file system that also
encrypts file names.

4. Usenetfs: breaks large flat article directories, most of-
ten found in very active news spools, into deeper di-
rectory hierarchies, so as to improve access time to
individual files.

These examples are merely experimental file systems in-
tended to illustrate the kinds of file systems that can be writ-
ten using Wrapfs. We do not consider them to be complete
solutions. There are many potential enhancements to our
examples.

4.1 Lofs

Lofs2 provides access to a directory of one file system from
another, without using symbolic links. It is most often used
by automounters to provide a consistent name space for all

1We submitted this small change for inclusion in future versions of
Linux.

2Our Linux 2.0 ports of lofs and Wrapfs were based on an older pro-
totype available in http://www.kvack.org/˜blah/lofs/.
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local and remote file systems, and by chroot-ed processes
to access portions of a file system outside the chroot-ed
environment

This trivial file system was actually implemented by
removing unnecessary code from Wrapfs. A loop-
back file system does not need to manipulate data or
file names. We removed all of the hooks that called
encode data , decode data , encode filename ,
anddecode filename . This was done to improve per-
formance by avoiding unnecessary copying.

4.2 Rot13fs

Before we embarked on a strong encryption file system,
described in the next section, we implemented one using
a trivial encryption algorithm. We decided at this stage to
encrypt only file data. The implementation was simple: we
filled in encode data anddecode data with the same
rot13 algorithm (since the algorithm is symmetric).

4.3 Cryptfs

Cryptfs uses Blowfish[17] — a 64 bit block cipher that is
fast, compact, and simple. We used 128 bit keys. Cryptfs
uses Blowfish in Cipher Block Chaining (CBC) mode, so
we can encrypt whole blocks. We start a new encryption se-
quence for each block (using a fixed Initialization Vector,
IV) and encrypt whole pages (4KB or 8KB) together. That
is, within each page, bytes depend on the preceding ones.
To accomplish this part, we modified a free reference im-
plementation (SSLeay) of Blowfish, and put the right calls
to encrypt and decrypt a block of data intoencode data
anddecode data , respectively.

Next, we decided to encrypt file names as well (other
than “.” and “..” so as to keep the lower level
file system intact). Once again, we placed the right
calls to encrypt and decrypt file names into the respec-
tive encode filename anddecode filename func-
tions. Applying encryption to file names may result in
names containing characters that are illegal in Unix file
names (such as nulls and forward slashes “/”). To solve
this, we also uuencode file names after encrypting them,
and uudecode them before decrypting them.

Key management was the last important design and im-
plementation issue for Cryptfs. We decided that only the
root user will be allowed to mount an instance of Cryptfs,
but could not automatically encrypt or decrypt files. We im-
plemented a simple ioctl in Cryptfs for setting keys. A user
tool prompts for a passphrase and using that ioctl, sends
an MD5 hash of the passphrase to a mounted instance of
Cryptfs. To thwart an attacker who gains access to a user’s
account or to root privileges, Cryptfs maintains keys in
an in-memory data structure that associates keys not with
UIDs alone but with the combination of UID and session
ID. To succeed in acquiring or changing a user’s key, an
attacker would not only have to break into an account, but

also arrange for his processes to have the same session ID
as the process that originally received the user’s passphrase.
Since session IDs are set by login shells and inherited by
forked processes, a user would normally have to authorize
themselves only once in a shell. From this shell they could
run most other programs that would work transparently and
safely with the same encryption key.

Details of the design and implementation of Cryptfs are
available as a separate technical report[23].

4.4 Usenetfs

Busy traditional Usenet news servers could have large di-
rectories containing many thousands of articles in direc-
tories representing very active newsgroups such ascon-
trol.cancelandmisc.jobs.offered. Unix directory searches
are linear and unsorted, resulting in significant delays pro-
cessing articles in these large newsgroups. We found that
over 88% of typical file system operations that our depart-
mental news server performs are for looking up articles.
Usenetfs improves the performance of looking up and ma-
nipulating files in such large flat directories, by breaking
the structure into smaller directories.

Since article names are composed of sequential num-
bers, Usenetfs takes advantage of this to generate a simple
hash function. After some experimentation, we decided
to create a hierarchy consisting of one thousand directo-
ries as depicted in Figure 5. We therefore distribute arti-

345 999

cancel

control

123456

. . .. . .001000

Figure 5: A Usenetfs Managed Newsgroup

cles across 1000 directories named 000 through 999. Since
article numbers are sequential, we maximize the distribu-
tion by computing the final directory into which the arti-
cle will go based on three lesser significant digits, skipping
the least significant one. For example, the article named
control/cancel/123456 is placed into the directory
control/cancel/345/ . The article name itself does
not change; it only gets moved one level down. We picked
the directory based on the second, third, and fourth digits of
the article number to allow for some amount ofclustering.
By not using the least significant digit we cluster ten se-
quential articles together: the ten articles 123450–123459
get placed in the same directory. This increases the chances
of kernel cache hits due to the likelihood of sequential ac-
cess of these articles, a further performance improvement.
In general, every article numbered X..XYYYZ gets placed
in a directory named YYY.
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Additionally, we decided to use a seldom used mode bit
for directories, the setuid bit, to flag a directory as managed
by Usenetfs. Using this bit allows the news administrator to
control which directory is managed by Usenetfs and which
is not, using a simplechmod command.

The implementation of Usenetfs concentrated in two
places. First, we implemented theencode filename
anddecode filename to convert normal file names into
their extended deeper-hierarchy forms, and back (but only
for directories that were flagged as managed by Usenetfs).
Second, we updated thereaddir function to iterate over
all possible subdirectories from 000 to 999, and perform a
(smaller) directory read within each one.

Details of the design and implementation of Usenetfs are
available as a separate technical report[22].

5 Performance

5.1 Wrapfs and Cryptfs

For most of our tests, we included figures for a native disk-
based file system because disk hardware performance can
be a significant factor. Since Cryptfs is a stackable file sys-
tem, we included figures for Wrapfs and for Lofs, to be
used as a base for evaluating the cost of stacking. When
using lofs, Wrapfs, or Cryptfs, we mounted them over
a local disk-based file system. CFS[3] and TCFS[4] are
two encryption file systems based on NFS, so we also in-
cluded the performance of native NFS. All NFS mounts
used the local host as both server and client (i.e., mounting
localhost:/path on /mnt ), and used protocol ver-
sion 2 over a UDP transport, with a user-space NFS server3.
CFS was configured to use Blowfish (same as Cryptfs), but
we had to configure TCFS to use DES, because it does not
support Blowfish.

For the first set of tests, we measured the time it took
to perform 10 successive builds of a large package (Am-
utils[20]) and averaged the elapsed times. These results
are listed in Table 1. For these tests, the standard devia-
tion did not exceed 0.8% of the mean. Lofs is only 1.1–

File System SPARC 5 Intel P5/90
ext2 1097.0 524.2
lofs 1110.1 530.6
wrapfs 1148.4 559.8
cryptfs 1258.0 628.1
nfs 1440.1 772.3
cfs 1486.1 839.8
tcfs 2092.3 1307.4

Table 1: Time to Build a Large Package (Sec)

1.2% slower than the native disk based file system. Wrapfs
adds an overhead of 4.7–6.8%, but that is comparable to
the 3–10% degradation previously reported for null-layer

3Universal NFSD 2.2betaXX included in the RedHat 5.2 distribution.

stackable file systems[8, 18] and is the cost of copying data
pages and file names.

Wrapfs is the baseline for evaluating the performance
impact of the encryption algorithm, because the only dif-
ference between Wrapfs and Cryptfs is that the latter en-
crypts and decrypts data and file names. Cryptfs adds an
overhead of 9.5–12.2% over Wrapfs. That is a significant
overhead but is unavoidable. It is the cost of the Blowfish
encryption code, which, while designed as a fast software
cipher, is still CPU intensive.

Next, we compare the three encryption file systems.
Cryptfs is 40–52% faster than TCFS. Since TCFS uses
DES and Cryptfs uses Blowfish, however, it is more proper
to compare Cryptfs to CFS. Still, Cryptfs is 12–30% faster
than CFS. Because both CFS and Cryptfs use the same en-
cryption algorithm, most of the difference between them
stems from the extra context switches that CFS incurs.

For the second set of tests we performed microbench-
marks on the file systems listed in Table 1, specifically
reading and writing of small and large files. These tests
were designed to isolate and show the performance differ-
ence between Cryptfs, CFS, and TCFS for individual file
system operations. Table 2 summarizes some of these re-
sults.

File Writes Reads
System 1024×8KB 8×1MB 1024×8KB 8×1MB
cryptfs 9.27 8.33 0.26 0.34
cfs 101.90 50.84 0.89 8.77
tcfs 110.86 84.64 6.45 7.94

Table 2: x86 Times for Read and Write Calls (Sec)

A complete and detailed analysis of the results listed in
Table 2 is beyond the scope of this paper, and will have to
take into account the size and effectiveness of the operating
system’s page and buffer caches. Nevertheless, these re-
sults clearly show that Cryptfs improves performance from
as little as 43% to as much as over an order of magni-
tude. Additional performance analysis of Cryptfs is avail-
able elsewhere[23].

5.2 Usenetfs

To test the performance of Usenetfs, we setup a test Usenet
news server and configured it with test directories of in-
creasingly greater number of files in each. Then we com-
pared the performance of typical news server operations
when these large directories were managed by Usenetfs and
when they were not (i.e., straight onto ext2fs).

We performed 1000 random lookups of articles in large
directories. When the directory had fewer than 2000 arti-
cles, Usenetfs added a small overhead of 70–80 millisec-
onds. The performance of ext2fs continued to degrade lin-
early, and when the directory had over 250,000 articles,
performance of Usenetfs was over 100 times faster. When
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we performed sequential lookups, thus involving kernel
caches, Usenetfs’s performance was only two times better
than ext2fs’s for directories with 500 or more articles.

The results for deleting and adding new articles showed
that Usenetfs’ performance remained almost flat for all
directory sizes we tested, while ext2fs’s performance de-
graded linearly. With just 10,000 articles in the directory,
adding or deleting articles was more than 10 times faster
with Usenetfs.

Since Usenetfs uses 1000 more directories for managed
ones, we expected the performance of reading a directory to
be worse. Usenetfs takes an almost constant 500 millisec-
onds to read a managed directory, while ext2fs once again
degraded linearly. It is not until there are over 100,000 ar-
ticles in the directory, that Usenetfs’s readdir is faster than
ext2fs’s. Although Usenetfs’s performance also starts de-
grading linearly after a certain directory size, this is not a
problem because the algorithm can be easily tuned and ex-
tended.

The last test we performed took into account all of the
above factors. Once again, we built a large package on a
busy news server that was configured to manage the top
6 newsgroups using Usenetfs. This test was designed to
measure the reserve capacity on the news server, or how
much more free did the CPU become due to using Usenetfs.
With Usenetfs, compile times improved by an average of
22%. During periods of heavy activity on the news server,
such as article expirations, compile times improved by a
factor of 2–3. Additional performance analysis of Usenetfs
is available elsewhere[22].

5.3 Portability

Table 3 shows the overall estimated times that it took us
to develop the file systems mentioned in this paper. Since
the first ports were for Linux 2.0, they took longer as we
were also learning our way around Linux and stackable file
systems in general. The bulk of the time was spent initially
on porting the Wrapfs template. Using this template, other
filesystems were implemented faster.

File Systems Linux 2.0 Linux 2.1/2.2
wrapfs 2 weeks 1 week
lofs 1 hour 30 minutes
rot13fs 2 hours 1 hour
cryptfs 1 week 1 day
usenetfs 2 days 1 day

Table 3: Time to Develop and Port File Systems

Another interesting measure of the complexity of Wrapfs
is the size of the code. The total number of source code
lines for Wrapfs in Linux 2.0 is 2157, but that number grew
to by more than 50% to 3279 lines when we ported Wrapfs
to the 2.1 kernel. This is a testament to the unfortunate

complexity that Linux 2.1 added, mostly due to the inte-
gration with the dentry concept.

6 Related Work

6.1 Other Stackable File Systems

Vnode stacking was first implemented by Rosenthal (in
SunOS 4.1) around 1990[15]. A few other works followed
Rosenthal, such as further prototypes for extensible file sys-
tems in SunOS[18], and the Ficus layered file system[6, 9]
at UCLA.

Several newer operating systems offer a stackable file
system interface. Such operating systems have the poten-
tial of easy development of file systems offering a wider
range of services. Their main disadvantages are that they
are not portable enough, not sufficiently developed or sta-
ble, or they are not available for common use. Also, new
operating systems with new file system interfaces are not
likely to perform as well as ones that are several years older.

TheHerd of Unix-Replacing Daemons(HURD) from the
Free Software Foundation (FSF) is a set of servers, running
on the Mach 3.0 microkernel[1], that collectively provide
a Unix-like environment. HURD file systems are imple-
mented at the user level. The HURD introduced the con-
cept of a translator. A translator is a program that can be
attached to a pathname and perform specialized services
when that pathname is accessed. Writing a new translator
is a matter of implementing a well defined file access inter-
face and filling in such operations as opening files, looking
up file names, creating directories, etc.

Spring is an object-oriented research operating system
built by Sun Microsystems Laboratories[12]. It was de-
signed as a set of cooperating servers on top of a micro-
kernel. Spring provides several generic modules that offer
services useful to a file system: caching, coherency, I/O,
memory mapping, object naming, and security. Writing a
file system for Spring entails defining the operations to be
applied on the file objects. Operations not defined are in-
herited from their parent object.

One work that has resulted from Spring is the Solaris
MC (Multi-Computer) File System[10]. It borrows the
object-oriented interfaces from Spring and integrates them
with the existing Solaris vnode interface to provide a dis-
tributed file system infrastructure through a special file sys-
tem calledpxfs, the Proxy File System. Solaris MC pro-
vides all of the benefits that come with Spring, while re-
quiring little or no change to existing file systems; those can
be gradually ported over time. Solaris MC was designed to
perform well in a closely coupled cluster environment (not
a general network) and requires high performance networks
and nodes.

8



6.2 Other News File Systems

The Cyclic News File System (CNFS)[5] stores articles in a
few large files or in a raw block device, recycling their stor-
age when reaching the end of the buffer. CNFS avoids most
of the overhead of traditional FFS-like[11] file systems, be-
cause it reduces the need for many synchronous meta-data
updates. CNFS reports an order of magnitude reduction in
disk activity. CNFS is part of the INN 2.x Usenet server
news software. In the long run, CNFS offers a superior so-
lution to the performance problems of news servers than
Usenetfs. Migrating from traditional news spools and soft-
ware to ones using CNFS, however, is a time consuming
process. Furthermore, since CNFS no longer uses tradi-
tional file systems, it is not possible to NFS-export the news
spool to other hosts; non-NNTP compliant news readers
cannot work with CNFS, but they can with Usenetfs.

Reiserfs4 is a file system available only for Linux that
uses balanced trees to optimize performance and space uti-
lization for files of any size and file names. Being a na-
tive disk-based file system, and using complex algorithms,
Reiserfs improves performance significantly, but it is hard
to develop and debug.

6.3 Other Encryption File Systems

CFS[3] is a portable user-level cryptographic file system
based on NFS. It is used to encrypt any local or remote di-
rectory on a system, accessible via a different mount point
and a user-attached directory. Users first create a secure
directory and choose the encryption algorithm and key to
use. A wide choice of ciphers is available and great care
was taken to ensure a high degree of security. CFS’s per-
formance is limited by the number of context switches that
must be performed and the encryption algorithm used.

TCFS[4] is a modified client-side NFS kernel module
that communicates with a remote NFS server. TCFS is
available only for Linux systems, and both client and server
must run on Linux. TCFS allows finer grained control over
encryption; individual files or directories can be encrypted
by turning on or off a special flag.

7 Conclusions

Wrapfs and the examples in this paper show that use-
ful, non-trivial vnode stackable file systems can be imple-
mented under Linux with minor changes to the rest of the
operating system, and with no changes to other file sys-
tems. Better performance was achieved by running the file
systems in the kernel instead of at user-level.

Estimating the complexity of software is a difficult task.
Nevertheless, it is our assertion that with Wrapfs, other
non-trivial file systems built from it can be prototyped in a
matter of hours or days. We also estimate that Wrapfs can

4http://www.idiom.com/˜beverly/reiserfs.html

be ported to any operating system in less than one month, as
long as the file system has a vnode interface that provides
a private opaque field for each of the major data structures
used in the file system. In comparison, traditional file sys-
tem development often takes many months to several years.

Wrapfs saves developers from dealing with many ker-
nel related issues, and allows them to concentrate on the
specifics of the file system they are developing. We hope
that with Wrapfs and the example file systems we have
built, other developers would be able to prototype new
file systems to try new ideas, and develop fully working
ones — bringing the complexity of file system development
down to the level of common user-level software.

We believe that a truly stackable file system inter-
face could significantly improve portability, especially if
adopted by the main Unix vendors and developers. If such
an interface becomes popular, it might result in many more
practical file systems developed. We hope through this pa-
per to have proven the usefulness and practicality of non-
trivial stackable file systems.

One item we would like to add to Wrapfs is support for
stackable file systems that change the size of the data, such
as with compression. Several initial designs we made in-
dicated a greater level of code complexity and serious per-
formance impact. We opted to hold off on such support for
the initial implementation of Wrapfs.
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