
Enhancing File System Integrity Through Checksums

Gopalan Sivathanu, Charles P. Wright, and Erez Zadok
Stony Brook University

Technical Report FSL-04-04

Abstract
Providing a way to check the integrity of informa-

tion stored in an unreliable medium is a prime neces-
sity in the field of secure storage systems. Also in op-
erating systems like Unix that allow a user to bypass
the file system to access the raw disk, integrity checks
not only detect data corruption, but also track malicious
attacks. Checksumming is a common way of ensur-
ing data integrity. Checksums that are generated using
cryptographic hash functions prevent unauthorized users
from generating custom checksums to match the mali-
cious data modification that they have made. This re-
port discusses the various design choices in file system
checksumming and describes an implementation using
an in-kernel database in a stackable encryption file sys-
tem.

1 Introduction
When a file system does not trust the disk in which it
stores its data and metadata, several interesting prob-
lems arise. This “untrusted disk” assumption is normally
prevalent in network attached storage systems where the
client file system communicates with the disk over an
insecure network, and hence is potentially vulnerable to
attacks on the network link if an attacker actively mod-
ifies or passively listens to file system traffic. However,
even in the context of local disk file systems, such con-
cerns may be valid and useful. For example, inexpensive
disks such as IDE disks may silently corrupt the data
they store, due to magnetic interference or even tran-
sient errors. Also, an attacker on a system could access
the raw disk directly and write to file system metadata
or data blocks, without the file system knowing it. Thus,
making the file system robust to such data corruption,
either as a result of a malicious attack or hardware mal-
functioning, is useful.

The common method of detecting corruption is
through the use of checksums. Applied in the context
of file systems on untrusted disks, there are various de-
sign choices that arise in checksumming. First, if the
file system wants to detect malicious attacks (and not
just genuine hardware errors), it must ensure that the

checksum cannot be forged to match some deliberately
corrupted data. This might require using some secure
hashing scheme so that obtaining the checksum would
require some private key, perhaps derived from the user
password or something similar.

One of the major limitations of file system checksum-
ming is performance. This is the traditional security-
performance trade-off that systems programmers are
ready to live with.

In this project, we have evaluated the advantages and
disadvantages of several ways of storing and retrieving
data and meta-data checksums from the disk, and imple-
mented a method that uses an in-kernel database [3] to
persistently store and retrieve the checksums. The im-
plementation is for NCryptfs, a stackable encryption file
system [9].

2 Background

2.1 Secure Hashing

The use of cryptographic hash functions has become a
standard in Internet applications and protocols. Crypto-
graphic hash functions map strings of different lengths
to short fixed size results. These functions are generally
designed to be collision resistant, which means that find-
ing two strings that have the same hash result should be
infeasible. In addition to basic collision resistance these
functions, like MD5 [6] and SHA1 [1], also have some
properties like randomness, unpredictability of the out-
put, proper mix etc. It is the combination of these prop-
erties that are attributed to cryptographic hash functions
that make them so attractive for several uses beyond their
original design as basic collision resistant functions.

HMAC is a specific type of a secure hashing func-
tion. It works by using an underlying hash function over
a message and a key. It is currently one of the predomi-
nant means to ensure that secure data is not corrupted in
transit over unsecure channels (like the Internet). This
can be used in the context of storage systems also to en-
sure integrity during read.

Any hashing fuction could be used with HMAC, al-
though more secure hashing functions are preferable. An

1



example of a secure hash function (which is commonly
used in HMAC implementations) is SHA-1. (Other
common hashing functions include MD5 and RIPEMD-
160). As computers become more and more powerful,
increasingly complex hash functions will probably be
used. Furthermore, there are several generations of SHA
hashing functions (SHA-256, SHA-384, and SHA-512)
which are currently available but not very widely used
as their added security is not yet believed to be needed
unless very high security is needed.

2.2 Stackable file systems
Stackable file systems [2] are a technique to layer new
functionalities to existing file systems. With no mod-
ification to the lower level file systems, a stackable file
system exists between the virtual file system and the disk
file systems, intercepting calls for performing special
operations and eventually redirecting them to the lower
level file system. By way of a stackable file system, we
can add new functionalities to existing file systems like
encryption, tracing etc. Unlike traditional disk file sys-
tems like Ext2, a stackable file system mounts on a di-
rectory and instead of a device. Since this is “stacked”
on top of an already mounted file system, it is called a
Stackable file system. A stackable versioning filesystem,
Verionfs [5] maintains versions of files at the stackable
level.

A stackable file system has many advantages: signifi-
cant among them being minimal development overhead,
portability, no change to the existing file systems etc.
When it is easy to develop a stackable file system, there
are some operations that cannot be done using it. An
example being block level operations. Since a stack-
able file system has the responsibility of being good to
a variety of underlying file systems, it provides a higher
level abstraction to the level of a file, which makes cer-
tain lower level operations almost impossible to perform
from the stackable level.

The goal of this project is to implement checksum-
ming in a stackable file system so that it can add check-
summing to any lower level file system.

2.3 The Context: NCryptfs
Ncryptfs [8, 9] is a stackable cryptographic file system
whose primary goal is to ensure security, confidential-
ity, while balancing security, performance and conve-
nience. It encrypts file data and names before storing
it to the disk. In NCryptfs, an encryption key is asso-
ciated with a group of file and directories termed as an
attach. Attaches are in-memory dentries visible at the
root of ncryptfs file system. There can be any number
of attaches in the file systems and these are in-memory
structures. Once the file system is unmounted, the attach
names are destroyed and while re-mounting it, a differ-

ent attach name can be chosen for the same key and still
the decrypted view can be seen. Thus an attach can be
characterized as a “window” that is associated with a key
that is used to see the decrypted view of the files and di-
rectories.

NCryptfs provides security and confidentiality, but
does not currently ensure data integrity of the encrypted
data that is stored on disk. A malicious user can al-
ways bypass NCryptfs and modify the encrypted data,
and these changes might remain undetected. Thus en-
suring data integrity in NCryptfs would be a useful goal.
This project implements file data and metadata check-
summing in Ncryptfs.

3 Threat Model

Filesystem checksumming is primarily aimed at detect-
ing the following:

• Corruption of disk data due to hardware errors. In-
expensive disks such as IDE disks silently corrupt
data stored in them due to magnetic interference or
transcient errors. These erros cannot be detected by
normal file systems.

• Malicious modification of data. In UNIX-like oper-
ating systems where accessing the raw disk is easy,
a malicious user can attempt to modify file data by
directly accessing the disk which the file system
would have no knowledge of. These modifications
can be detected through checksumming.

• In the particular context of a stackable file sys-
tem where the underlying file system can always
be directly accessed, checksumming metadata is re-
quired to determine if change of metadata like ac-
cess time and modify time are made even if there
is no change to the file data. This helps to detect
breach of confidentiality

4 Design Choices

There are various ways to implement checksumming in
a file system. Computation of checksums, storing and
retrieving them should happen in the critical section of a
file read and file write in order to ensure integrity. Thus,
it is imperative that they are stored in the right place so
that retrieving them during read does not impose any un-
reasonable overhead. That said, there are different de-
sign approaches which one can adopt that differ in where
the file data and metadata checksums are stored. One of
the important constraints that drastically limits the de-
sign choices is what is imposed by a stackable file sys-
tem. A stackable file system provides a file level ab-
straction that prevents us from performing block level
checksumming.

2



4.1 Block Level Checksumming

One of the methods to handle checksumming is to com-
pute a per-block checksum for all data blocks of a file,
indexed by the relative block number. The inode can be
modified to introduce a new set of pointers that point to
checksum blocks. Whenever a disk block is added to a
file, its checksum would be computed and stored in the
checksum blocks. The number of checksum blocks for
a file would be:

No.ofcksumblocks =
No.ofdatablocks

(blocksize/checksumsize)

Typically the size of checksum would be 128 bits.
The advantage of using this scheme is that the checksum
blocks can be accessed just the way the data blocks are
accessed from the inode and hence locality can be main-
tained. Moreover it does not impose any space overhead
and uses the bare minimum space that is required.

Since our goal is to implement checksumming in
NCryptfs which is a stackable file system, block level
operations are not permitted in it and hence this method
cannot be used.

4.2 Out of Bands

Since stackable file systems provide a file level ab-
straction, another design choice would be to have a
unique hidden checksum file for every file in the file
system. Since file level abstraction gives the notion of
pages rather than blocks, a per page checksum can be
generated for each page and stored in the checksum
file. The number of pages in the checksum file would be:

No.ofcksumpages =
No.ofdatapages

(pagesize/checksumsize)

Though this method provides a convenient way of
storing checksums, reading a file requires opening two
files. Atleast every n page reads of every file would re-
sult in reading a checksum page, where n is defined as

pagesize
checksumsize . Thus it imposes unnecessary overheads.
Moreover it completely loses track of locality.

4.3 Inline Checksums

This is a variant of the out of bounds method. Here
the checksum pages are interleaved with the data pages.
There would be a checksum page after every n data
pages, where n is defined as pagesize

checksumsize . This method
makes effective use of locality, as most file systems try
to store pages of the same file in a nearly contiguous
fashion on disk. Though this method is good for re-
trieving checksums efficiently, updating checksums and
deleting checksums during file truncation is complicated
and might require unnecessary copying of data.

5 Approach

The approach we adopted is to use in-kernel databases to
store data and meta-data checksums. KBDB [3] is an in-
kernel implementation of the Berkeley DB [7]. Berke-
ley DB is a scalable, high performance, transaction pro-
tected data management system that provides the abil-
ity to efficiently and persistently store (key,value)
pairs using hash tables, B+ trees, queues and indexed
by logical record number. Since in this project, the per-
sistent data that needs to be stored are the checksums,
we have divided file data to the granularity of a memory
page. Checksums are computed for the pages in mem-
ory and stored in the database. Since a checksum entry
is associated with a file and the page index inside the
file, we have designed the key as a stream containing
the inode number and the page index of the page whose
checksums is being stored. One of the main advantages
of using an in-kernel database to store the checksums
is locating and retrieving the checksums does not re-
quire complicated implementations. The database get
services retrieves the checksum for the file in a pretty ef-
ficient manner as it stores it in a hash file. Similarly to
checksum file metadata, important fields of the inode ob-
ject are checksummed and stored in the database keyed
by the inode number which is guaranteed to be unique.
Checksums databases are now stored in hash file format.

6 Implementation

The implementation of filesystem checksumming was
done in the Linux Kernel version 2.4 and it required ad-
dition of about 300 lines of code to the kernel. Since
for this project, checksumming had to be implemented
in the context of NCryptfs, certain new complications
arose. In NCryptfs, files cannot be created in the root
directory of the file system. To create a file in NCryptfs,
an attach has to be created initially. An attach is an
in-memory dentry which has an encryption key asso-
ciated with it. It is a window through which all files
that are encrypted with a particular key can be viewed
in a decrypted fashion. Since logically an attach is
the beginning point of the NCryptfs file system, We
thought it fit to have per attach checksum databases.
Since both data and metadata need to be checksummed,
each attach would be having two databases associ-
ated with them — the data checksum db and the
metadata checksum db. The pointer to these
databases are implemented as the member variables of
the in-memory attach structure, attached entry.

Implementing checksumming required me to do the
following basic steps:

1. Opening the data and metadata databases whenever
a new attach is created in NCryptfs. This required
modification to the ncryptfs do attach()

3



function.
2. Compute the checksum for a data page and store it

into the data checksum database whenever it is be-
ing written to the disk. This required me to mod-
ify the ncryptfs commit write() and the
ncryptfs writepage() functions.

3. Retrieve the checksum for a data page from the
database whenever it is read, compute the check-
sum for the read page and verify both.

4. Compute and store the inode checksum (meta data)
whenever an inode is written to disk. For this we
had to modify ncryptfs put inode() func-
tion.

5. Retrieve the inode checksum from the database
when an inode is referenced, compute the new
checksum and verify both. This required modifi-
cations to the ncryptfs lookup() function.

6. Close the databases whenever an attach is removed
from the file system. We have done this in the
ncryptfs do detach() function.

The checksums generated by the HMAC function
would be of length 16 bytes. For storing the file data
checksums, the key value should uniquely identify the
particular page of the file. For this we are using an 8-
byte stream as the key whose first 4 bytes would be the
inode number to which the page belongs to and the rest
of the 4 bytes would be the page index of the page. Since
the key value is just a number, the default hash function
(the linear congruential method) followed by Berkeley
DB to store hashed files is an efficient means.

Since, for metadata checksumming, fields of the in-
odes are to be checksummed, the key for these are
just the inode numbers which is a 4-byte quantity.
In the context of NCryptfs, two inode objects comes
into picture which are the ncryptfs inode and the
hidden inode. texttthidden inode is the the inode
object of the lower level file system on which NCryptfs
is mounted on. During meta data checksumming, the
fields of the hidden inodes are alone checksummed and
not the higher level inodes. This is because we are in-
terested in ensuring integrity of the encrypted data that
is stored in the lower level file system. The fields of the
inode that are needed to be checksummed are copied to
a custom data structure called ckstat and then check-
summed. The following is the ckstat structure:

struct ckstat {
umode_t mode;
nlink_t nlink;
uid_t uid;
gid_t gid;
loff_t size;
time_t atime;
time_t mtime;

time_t ctime;
unsigned int blkbits;
unsigned long blksize;
unsigned long blocks;
unsigned long version;

}

Since the different times, atime, mtime, and ctime are
also checksummed, NCryptfs can now detect even unau-
thorized access and modification of file even if the file
data is not necessarily changed. Thus it can detect confi-
dentiality breach also (i.e., unauthorized examination of
cipher text).

Whenever there is a checksum mismatch for a file,
NCryptfs reports the same and then returns an error. This
is based on the premise that majority of the integrity is-
sue arise due to disk malfunctioning. In the case of meta-
data checksum mismatch, the file system stops further
operations like read or write on the file. All metadata
checksum mismatches are caught at the time of a lookup
operation.

7 Evaluation
We evaluated the performance of checksumming using
both IO intensive and CPU intensive benchmarks. For
IO intensive benchmarking, we used postmark [4], a
popular file system benchmarking tool. For CPU inten-
sive testing, we compiled the am-utils utility package.
Compilation of am-utils, in addition to generating huge
CPU load, performs many different file system opera-
tions including truncation, deletion etc.

We performed all benchmarks on Red Hat Linux 9
with Kernel version 2.4.24 running on a 1.7GHz Pen-
tium 4 processor with 1GB of RAM. For all the experi-
ments we used a 20GB 7200 EPM WDC IDE disk. We
remounted the filesystem during each run of benchmarks
so as to ensure that any cached is cleared.

������

��

��������

	�	�	�	
	�	�	�	

�
�


�
�


�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

0

100

200

300

400

500

600

700

NC−Vanilla NC−Cksum

T
im

e 
(S

ec
on

ds
)

 

Wait
 User

 System

Figure 1: Postmark results

Figure 1 shows the results of Postmark. We measured
the user time, system time and the elapsed time. Accord-
ing to the Postmark results, checksummed NCryptfs im-

4



plementation had an overhead of 130% compared to the
vanilla NCryptfs implementation.

������

���� ������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	


�
�


�
�


�
�


�
�


�
�


�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

0

50

100

150

200

250

NC−Vanilla NC−Cksum

T
im

e 
(S

ec
on

ds
)

 

Wait
 User

 System

Figure 2: Am-utils compilation results

The results of Am-utils compilation in Figure 2
showed a 21% overhead due to checksumming. Mi-
crobenchmarks showed that almost 90% of the over-
heads in checksummed NCryptfs was caused due to the
database operations. The difference in the overheads re-
vealed by Postmark and Am-utils is because, Postmark
creats a huge number of new files and directories which
results in a large number of database operations whereas
Am-utils does not generated that many database opera-
tions.

8 Conclusions

This project is intended to ensure integrity of data in a
stackable encryption file system, NCryptfs. Thus most
of the implementation specifics and part of the design
was tied up with the constraints of the general stacking
convention and the semantics of NCryptfs. In a regu-
lar filesytem this may not be the best way to implement
checksumming. But given the conventions, the method
followed is a reasonable approach.

8.1 Future enhancments

There can be potential optimizations and performance
tuning possible in the implementation that would make
use of suitable values for different database parameters.
Two important parameters, the database page size, and
the page fill factor have to be set with suitable values
depending upon the key size and the data size so that
the hash utilization is the maximum. These are to be
fixed based on the result of further detailed performance
testing, profiling and timing study.

9 Acknowledgments

This work was partially made possible by an NSF CA-
REER award EIA-0133589, NSF award CCR-0310493,
and HP/Intel gifts numbers 87128 and 88415.1.

References
[1] P. A. DesAutels. SHA1: Secure Hash Al-

gorithm. www.w3.org/PICS/DSig/SHA1_1_0.

html, 1997.

[2] J. S. Heidemann and G. J. Popek. File system devel-
opment with stackable layers. ACM Transactions on
Computer Systems, 12(1):58–89, February 1994.

[3] A. Kashyap, J. Dave, M. Zubair, C. P. Wright,
and E. Zadok. Using Berkeley Database in
the Linux kernel. www.fsl.cs.sunysb.edu/

project-kbdb.html, 2004.

[4] J. Katcher. PostMark: a New Filesystem Bench-
mark. Technical Report TR3022, Network Appli-
ance, 1997. www.netapp.com/tech_library/

3022.html.

[5] K. Muniswamy-Reddy. Versionfs: A Ver-
satile and User-Oriented Versioning File
System. Master’s thesis, Stony Brook Uni-
versity, December 2003. Technical Report
FSL-03-03, www.fsl.cs.sunysb.edu/docs/

versionfs-msthesis/versionfs.pdf.

[6] R. L. Rivest. RFC 1321: The MD5 Message-Digest
Algorithm. Internet Activities Board, April 1992.

[7] M. Seltzer and O. Yigit. A new hashing package
for UNIX. In Proceedings of the Winter USENIX
Technical Conference, pages 173–84, January 1991.
www.sleepycat.com.

[8] C. P. Wright, J. Dave, and E. Zadok. Cryptographic
File Systems Performance: What You Don’t Know
Can Hurt You. In Proceedings of the 2003 IEEE
Security In Storage Workshop (SISW 2003), October
2003.

[9] C. P. Wright, M. Martino, and E. Zadok. NCryptfs:
A Secure and Convenient Cryptographic File Sys-
tem. In Proceedings of the Annual USENIX Techni-
cal Conference, pages 197–210, June 2003.

5


