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Abstract

Utility computing is being gradually realized as exemplified

by cloud computing. Outsourcing computing and storage

to global-scale cloud providers benefits from high accessi-

bility, flexibility, scalability, and cost-effectiveness. How-

ever, users are uneasy outsourcing the storage of sensitive

data due to security concerns. We address this problem

by presenting SeMiNAS—an efficient middleware system

that allows files to be securely outsourced to providers and

shared among geo-distributed offices. SeMiNAS achieves

end-to-end data integrity and confidentiality with a highly

efficient authenticated-encryption scheme. SeMiNAS lever-

ages advanced NFSv4 features, including compound pro-

cedures and data-integrity extensions, to minimize extra

network round trips caused by security meta-data. SeMi-

NAS also caches remote files locally to reduce accesses to

providers over WANs. We designed, implemented, and eval-

uated SeMiNAS, which demonstrates a small performance

penalty of less than 26% and an occasional performance

boost of up to 19% for Filebench workloads.

Categories and Subject Descriptors D.4.3 [File Systems

Management]: Distributed File Systems

1. Introduction

Cloud storage has demonstrated many benefits of utility

computing, including high accessibility (from multiple de-

vices, at multiple locations), availability, flexibility, scalabil-

ity, and cost-effectiveness [3, 39, 66]. However, storing data

in intangible devices of external providers is a worrisome

decision intensified by high-profile incidents such as silent

data corruption [60], theft of patient records [43], and leak-

age of intimate photos of celebrities [2]. To ease these secu-

rity concerns, many cloud users manually encrypt and gener-
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Figure 1. SeMiNAS high-level architecture. Each geo-

graphic office has a trusted SeMiNAS proxy to protect

clients from the untrusted storage provider. SeMiNAS can

securely share files among geo-distributed offices.

ate integrity checksums of data. These security mechanisms

can cause significant performance penalty and might be too

expensive to justify storing encrypted data in the cloud [8].

Thus it is critical for security mechanisms to be efficient.

To allow files to be securely and efficiently stored in

clouds, we present SeMiNAS—an on-premises middleware

that seamlessly secures accesses to remote storage servers

over WANs. As shown in Figure 1, SeMiNAS inherits many

advantages from the popular middleware architecture, as

exemplified by network firewalls. For instance, SeMiNAS

can protect a large number of clients by consolidating a

small number of SeMiNAS proxies; SeMiNAS also mini-

mizes migration costs by requiring only minimal configura-

tion changes to existing clients and servers.

SeMiNAS provides end-to-end data integrity and con-

fidentiality using authenticated encryption before sending

data to storage providers. Data stays encrypted until SeM-

iNAS retrieves and decrypts the data on clients’ behalf. End-

to-end integrity and confidentiality protects data not only

from attacks during data transmission over WANs, but also

from misbehaving providers. Using a simple and robust key

exchange scheme, SeMiNAS can share files securely among

geo-distributed offices without relying on any trusted third-

party or secret channel for key management.

SeMiNAS ensures its security scheme is efficient with

three mechanisms: (1) SeMiNAS stores Message Authenti-

cation Codes (MAC) together with file data using NFS data-

integrity extension [46], so that no extra WAN round trips

are needed for checking and updating MACs. (2) SeMiNAS

uses NFSv4’s compound procedures to combine operations

on file headers (added by SeMiNAS for distributing file keys



securely among proxies) with small meta-data operations.

Therefore, SeMiNAS does not introduce any extra WAN

round trips for its security meta-data. (3) SeMiNAS con-

tains a persistent write-back cache that stores recently used

data and coalesces writes to the server; this further reduces

the communication to remote servers. With these three opti-

mizations, SeMiNAS is able to provide integrity and confi-

dentiality with a small overhead of less than 26%.

Overall, we have three contributions: (1) a middleware

system that allows clients to securely and efficiently store

and share files in remote NAS providers; (2) a study of lever-

aging NFSv4 compound procedures for a highly efficient se-

curity scheme; and (3) an implementation and evaluation of

NFSv4 end-to-end Data Integrity eXtension (DIX) [46].

The rest of this paper is organized as follows. Section 2

presents the background and motivation behind SeMiNAS.

Section 3 and Section 4 describe its design and implementa-

tion, respectively. Section 5 evaluates SeMiNAS under dif-

ferent networks and workloads. Section 6 discusses related

work and Section 7 concludes.

2. Background and Motivation

We present the background and motivation behind SeMiNAS

by answering two questions: (1) Why we need yet another

cryptographic file system on an untrusted server—an area

studied more than a decade ago? (2) Why SeMiNAS uses an

NFS back-end instead of a key-value object back-end?

A revisit of cryptographic file systems. Utility computing

requires storing data in external providers. Consequently,

security concerns arise because of the opaque and multi-

tenant nature of external servers, as well as the large ex-

ploitation surface area of public wide-area networks. Us-

ing cryptographic file systems to securely outsource data has

been studied before in SFS [37], Cepheus [29], SiRiUS [23],

SUNDR [33], Iris [57], and others [18, 19, 28, 61, 68]. How-

ever, a revisit of these studies is needed for three reasons.

First, modern cryptographic file systems should protect

data not only from potentially malicious servers, but also

from the deep storage stack (with multiple layers of vir-

tualization, software, firmware, hardware, and networking),

which is much more complex and error-prone than before [4,

34]. Data Integrity eXtensions (DIX) [12] is a growing trend

of making the once hidden Data Integrity Fields (DIF) of

storage devices available to applications. This can help keep

data safe from both malicious servers and a misbehaving

storage stack. By providing an eight-byte out-of-band stor-

age for security checksums per 512-byte sector, DIX can

protect the whole data path from applications all the way

down to physical storage media.

Second, newer and more powerful networking storage

protocols have emerged, particularly NFSv4 [53, 54, 58].

Compared to its previous versions, NFSv4 is superior not

only in performance, scalability, and manageability [7, 38],

but also in security with RPCSEC GSS [15] and ACLs [53,

54, 58]. Moreover, with advanced features including com-

pound procedures and delegations, NFSv4 provides great

opportunities for making cryptographic file system flexible

and efficient when storage servers are remote over WANs.

Third, the performance penalty of modern cryptographic

file systems should be small enough to maintain a lower total

cost of ownership—a key incentive for outsourcing storage.

Some researchers [8] argued that encrypting data in cloud

was too expensive, whereas others [1, 61] claimed new hard-

ware acceleration makes encryption viable and cheap for

cloud storage. These debates highlight the importance of re-

ducing performance overhead when securing cloud storage.

Therefore, SeMiNAS strives for high performance as well as

security, whereas many prior systems [18, 23, 33] sacrificed

performance by up to 90% for security.

An NFS vs. a key-value object back-end. Currently, most

cloud storage vendors provide key-value object stores. How-

ever, SeMiNAS uses an NFS back-end instead for four rea-

sons. First, we believe that cloud storage is still in its early

age and future cloud storage will offer richer, file-system

APIs in addition to key-value object APIs. Key-value object

stores are popular now primarily because of simplicity. File-

systems APIs in clouds are likely to grow in popularity as

cloud applications demand more functions from cloud stor-

age vendors. This is a trend as seen by the recent cloud offer-

ing of the NFSv4-based Amazon Elastic File System [26].

Second, the open, pervasive, and standard NFS API has

many advantages over vendor-specific object APIs. NFS

is compatible with the POSIX standard, and most appli-

cations based on direct-attached storage can continue to

work on NFS without change. Therefore, migration from

on-premises storage to cloud NAS providers requires only

minimal effort. By contrast, a full migration from file sys-

tems to key-value object stores can be prohibitive because

object stores support fewer features (i.e., absence of file at-

tributes, links, locks) and sometimes use weaker consistency

models (e.g., eventual consistency [10]) than file systems.

Third, file systems have much richer semantics than key-

value object stores, and can significantly simplify appli-

cation development. As more applications are deployed in

clouds, rudimentary object stores have begun to fall short of

functionalities to support complex systems [49]. The richer

semantics of file systems also provide more optimization

opportunities than key-value stores. For example, NFS can

be much more efficient with pNFS [53], server-side copy-

ing [58], and Application-Data Blocks [58].

Fourth, NFSv4 is optimized for WANs, and its speed

over WANs can be considerably improved by caching, as

was demonstrated by both academia [35] and industry [51].

The performance boost of an NFS cache, such as SeMiNAS,

can be particularly significant with NFSv4 delegations—a

client caching mechanism that enables local file operations

without communication to remote servers. Delegations do

not compromise NFS’s strong consistency [53]; they are



effective as long as concurrent and conflicting file sharing

among clients is rare, which is often true [32].

3. SeMiNAS Design

We present the design of SeMiNAS including its threat

model, design goals, architecture, security scheme, NFSv4-

based performance optimizations, and caching scheme.

3.1 Threat Model

Our threat model reflects the settings of an organization with

offices in multiple locations, and employees in each office

store and share files via a SeMiNAS proxy (see Figure 1).

The Storage Provider. We do not trust the storage provider

in terms of confidentiality and integrity. Transfering data

over WANs or the Internet is vulnerable to network snif-

fering and man-in-the-middle attacks. Even if the commu-

nication is protected by encryption, storing data in plaintext

format is still dangerous because the storage device may be

shared with other malicious tenants. The same is true for

data integrity: attackers inside and outside the provider may

covertly tamper with the data. However, we think availability

is a smaller concern: all major cloud services had availability

higher than four nines (99.99%) [66].

Clients. Clients are trusted. Clients are usually operated by

employees of the organization, and are generally trustwor-

thy if proper access control is enforced. SeMiNAS supports

NFSv4 and thus can enforce access control using traditional

mode bits and advanced ACLs [53].

The Middleware. SeMiNAS is trusted. It provides cen-

tralized and consolidated security services. Physically, the

middleware is a small cluster of computers and appliances,

which can fit in a guarded machine room. Thus, securing the

middleware is easier than securing all clients that might scat-

ter over multiple buildings. An organization can also ded-

icate experienced security personnel to fortify the middle-

ware. SeMiNAS currently does not handle replay attacks,

which we are addressing in future work.

3.2 Design Goals

We designed SeMiNAS to achieve the following four goals,

ordered by descending importance:

• High security: SeMiNAS should ensure high integrity

and confidentiality while storing and sharing data among

geo-distributed clients.

• Low overhead: SeMiNAS should have minimal perfor-

mance penalty by using a low-overhead security scheme

and effectively caching data.

• Modularity: SeMiNAS should be modular so that more

security features, such as anti-virus and intrusion detec-

tion, can be easily added in the future.

• Simplicity: SeMiNAS should have a simple architecture

that eases development, deployment, and maintenance.

3.3 Architecture

SeMiNAS is a cryptographic file system that serves as a

proxy between clients and remote cloud servers. SeMiNAS

has a stackable file system architecture so that its security

mechanisms can be easily added as layers on top of exist-

ing storage gateways and WAN accelerators. Stackable file

systems, such as Linux’s UnionFS [67] and OverlayFS [6],

are flexible for three reasons: (1) they can intercept all file

operations including ioctls; (2) they can be stacked on top

of any other file systems (e.g., ext4 and NFS); and (3) the

stacking can be composed in different orders to achieve a

wider range of functionalities. Stackable file systems are also

simpler than standalone file systems because they can use

existing unmodified file systems as building blocks. Stack-

able file systems can also achieve high security as shown in

previous studies [24, 27, 42, 68].

SeMiNAS consists of multiple proxies in geo-distributed

offices that share files securely via a common storage

provider. Each office has a SeMiNAS proxy, which acts

as an NFS server to clients and as a client to remote NFS

servers. SeMiNAS protects files transparently and stores

files in ciphertext format in remote cloud servers. A client

writes a file by first sending an NFS request to SeMiNAS.

Then, SeMiNAS simultaneously encrypts and authenticates

the data to generate ciphertext and Message Authentication

Codes (MACs). After that, SeMiNAS sends the ciphertext

and MACs to the cloud. File reading happens in reverse:

SeMiNAS simultaneously verifies and decrypts the data

from the ciphertext and MACs when reading from remote

servers. Each file has a unique encryption key, which is se-

cretly shared among geo-distributed offices using a PGP-like

scheme. SeMiNAS combines the encryption and authentica-

tion functionality in one stackable file-system layer.

In addition to the security stackable layer, SeMiNAS

contains another stackable file-system layer that caches file

content in persistent storage devices in SeMiNAS proxies.

Caching is indispensable to avoid the long latency in WANs.

SeMiNAS stacks the caching layer on top of the security

layer so that file content is cached in cleartext format and

reading from the cache does not require decryption. Saving

the file’s content as cleartext in SeMiNAS is secure because

SeMiNAS is fully trusted in our threat model.

3.4 The Security Stackable Layer

In the security stackable file-system layer, SeMiNAS uses

authenticated-encryption to simultaneously authenticate and

encrypt files [64]. Authenticated-encryption is desirable for

strong security because combining a separate encryption

layer and an authentication layer is susceptible to security

flaws. There are three common ways to combine encryption

and authentication: (1) Authenticate then Encrypt (AtE) as

used in SSL; (2) Encrypt then Authenticate (EtA) as used

in IPSec; and (3) Encrypt and Authenticate (E&A) as used

in SSH. Despite being used by popular security protocols



(SSL and SSH), both AtE and E&A turned out to be “not

generically secure” [30]. Only one out of the three combina-

tions (i.e., EtA) is considered to be secure [36]. The security

ramifications of these combinations are rather complex [5]:

even experts have made mistakes [31]. Therefore, SeMiNAS

avoids separating encryption and authentication, and instead

uses one of the standard authenticated-encryption schemes

that perform both operations simultaneously.

Out of the ISO-standardized authenticated-encryption

modes, we chose the Galois/Counter Mode (GCM) because

of its superior performance [9] over other modes. SeMi-

NAS strictly follows NIST’s guidance of using GCM and

meets the “uniqueness requirements on IVs and keys” [14].

GCM accepts three inputs and produces two outputs. The

three inputs are the plaintext to be both authenticated and

encrypted (PDATA), additional data only to be authenticated

(ADATA), and a key; the two outputs are ciphertext and a

Message Authentication Code (MAC). Out of the three in-

puts, either PDATA or ADATA can be absent. This lets SeM-

iNAS achieve integrity but not encryption by leaving PDATA

empty and using the concatenation of data and meta-data as

ADATA. This is useful when encryption is not necessary, for

example, when storing open-source files.

On write operations, GCM uses the data to be written

as PDATA and additional security meta-data (discussed in

Section 3.4.2) as ADATA. GCM outputs the ciphertext and

MAC, which are then written to the remote server. On read

operations, SeMiNAS retrieves the ciphertext and MAC,

and then simultaneously verifies the MAC and decrypts the

ciphertext. SeMiNAS thus achieves end-to-end data integrity

and confidentiality as the protection covers both the transport

channel and the storage stack of the server.

3.4.1 Key Management

Key management is critical for strong security. SeMiNAS

uses a simple yet robust key management scheme. Each

SeMiNAS proxy has a master key pair, which is used for

asymmetric encryption (RSA) and consists of a public key

(MuK) and a private key (MrK). The public keys are ex-

changed among geo-distributed proxies manually by secu-

rity personnel. This is feasible because one geographic of-

fice usually has only one SeMiNAS proxy, and key exchange

is only needed when opening an office in a new site. This

scheme has the advantages of not relying on any third-party

for public key distribution. Each file has a symmetric file key

(FK) and a 128-bit initialization vector (IV); both FK and IV

are 128-bit long and randomly generated. To avoid reusing

IVs [14], SeMiNAS adds to the IV the block offset number

to generate a unique IV for each block.

Because each SeMiNAS proxy maintains the public keys

(MuKs) of all other proxies, the file keys (FKs) can be se-

cretly shared among all SeMiNAS proxies under the pro-

tection of MuKs. When creating a file, a SeMiNAS proxy

(creator) generates an FK. Then for each SeMiNAS proxy

with which the creator is sharing the file (accessor), the cre-
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Figure 2. SeMiNAS security meta-data

ator encrypts the FK using the accessor’s public key (MuK)

with the RSA algorithm, and generates a 〈SID, EFK〉 pair

where SID is the unique ID of the accessor and EFK is the

encrypted FK. All the 〈SID, EFK〉 pairs are then stored in the

header of the file. When opening a file, a SeMiNAS proxy,

which needs to be an accessor of the file, first finds its 〈SID,

EFK〉 pair in the header, and then retrieves the file key FK

by decrypting the EFK using its private key (MrK).

3.4.2 Security Meta-Data

SeMiNAS maintains per-file meta-data so that files can be

encrypted and secretly shared among geo-distributed offices.

As shown in Figure 2, the most important per-file meta-

data is the encrypted key pairs discussed in Section 3.4.1;

other per-file meta-data is authenticated and encrypted file

attributes including unique file ID, IV, real file size flags, etc.

SeMiNAS saves the per-file meta-data in a 4KB file header.

More space can be reserved for the header by punching

a hole in the file [58] following the header. Thus, when

accommodating more 〈SID, EFK〉 pairs, the header can grow

beyond 4KB by filling the hole without shifting any file data.

SeMiNAS divides a file into fix-sized data blocks and

applies GCM to each block (with padding if necessary).

Therefore, it also maintains per-block meta-data including

a 16-byte MAC and an 8-byte block offset (Figure 2). The

block offset is combined with the per-file IV to generate the

unique per-block IV, and is also used to detect an attack of

swapping blocks. SeMiNAS can detect inter-file swapping

as well because each file has a unique key. The per-block

meta-data is stored using DIX as detailed in Section 3.5.1.

3.5 NFSv4-Based Performance Optimizations

SeMiNAS leverages two advanced NFSv4 features to ensure

its security scheme has low overhead: Data-Integrity eXten-

sion (DIX) and compound procedures, discussed next.

3.5.1 NFS Data-Integrity eXtension

DIX gives applications access to the long-existed out-of-

band channel of information in storage media. With NFSv4,

NFS clients can utilize DIX to store extra information in

NFS servers [46]. Figure 3 shows how SeMiNAS leverages

DIX and stores the per-block meta-data (a MAC and an

offset). This is particularly beneficial in wide-area environ-

ments because it saves many extra network round trips for

meta-data operations.
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Figure 3. NFS end-to-end data integrity using DIX

Storing MACs and offsets using DIX is better than the

other three alternative methods: (1) The first alternative is

to write the concatenation of each encrypted block and its

MAC as one file in the cloud. This method not only bur-

dens file system meta-data management with many small

files [21], but also negates the benefits of using a file-system

API such as the file-level close-to-open consistency (which

means once clients close a file, all their changes to the file

will be available to clients who open the file later). (2) The

second alternative method is to use an extra file for all per-

block meta-data of each file. However, this is suboptimal,

especially considering the high latency of WANs, because

writing data blocks incurs an extra write request to the meta-

data file. (3) The third alternative is to map one block to

a larger block in the cloud-stored file. For example, a file

with ten 16KB blocks corresponds to a cloud file with ten

slightly larger blocks (i.e., 16KB+N where N is the size

of the per-block meta-data). However, this method suffers

from extra read-modify-update operations caused by break-

ing block alignment. Using a larger block size (e.g., 256KB

instead of 16KB) alleviates this problem by having fewer

extra read-modify-update operations, but it also makes each

extra operation more expensive.

Using DIX frees SeMiNAS from all aforementioned

problems. To accommodate the 24-byte per-block meta-data,

we require a block to be at least 2KB large, because each

sector uses at least two DIX bytes by itself for an internal

checksum and leaves at most six DIX bytes for applications.

3.5.2 Compound Procedures

To maintain the security meta-data in file headers, SeM-

iNAS performs many extra file-system operations (e.g., a

read of the header when opening a file). Sending separate

NFS requests for these extra operations incurs extra WAN

round trips and consequently large performance overhead.

To avoid this, SeMiNAS leverages compound procedures—

a new NFSv4 feature that combines multiple operations into

one NFS request. Compound procedures can significantly

shorten the average latency of operations. This is because, in

high-latency networks, a single multi-operation RPC takes

almost the same amount of time to process as a single-

operation RPC.

Extra operations on file headers are great candidates for

compound procedures because all file-header operations im-

mediately follow some other user-initiated file-system oper-

ations. By packing extra file-header operations into the same

NFS request of the initiating operations, no extra requests

are needed. Specifically, SeMiNAS packs extra operations

into compound procedures in five scenarios: (1) creating

the header after creating a file; (2) reading the header after

opening a file; (3) updating the header before closing a dirty

file; (4) reading the header when getting file attributes; and

(5) getting the attributes (GETATTRS) after writing to a file.

Compound procedures are highly effective for SeMi-

NAS. We have benchmarked the optimization of compound

procedures separately using Filebench’s File-Server work-

load: compound procedures cut the performance overhead

of SeMiNAS from 52% down to merely 5%.

3.6 Caching

SeMiNAS has a stackable file-system layer that caches re-

cently used file data blocks, so that hot data can be read in

the low-latency on-premises network instead of over WANs.

The caching layer is designed to be a write-back cache to

minimize writes to the cloud as well as reads. Being write-

back, our cache is persistent because some NFS requests—

WRITEs with the stable flag, and COMMITs—require dirty

data to be flushed to “stable storage” [54] before replying.

Because the NFS protocol demands stable writes to sur-

vive server crashes, the cache layer also maintains additional

meta-data in stable storage to ensures correct crash recovery.

The meta-data includes a list of dirty files and a per-block

flag to distinguish dirty blocks from clean blocks.

For each cached file, SeMiNAS maintains a sparse file of

the same size in the proxy’s local file system. Insertion of file

blocks are performed by writing to the corresponding blocks

of the sparse files. Evictions are done by punching holes

at the corresponding locations using Linux’s fallocate

system call. This design delegates file block management

to the local file system, and thus significantly simplifies the

caching layer. SeMiNAS also stores the crash recovery meta-

data of each file in a local file. The caching layer does not

explicitly keep hot data blocks in memory, but implicitly

does so by relying on the OS’s page cache.

When holding a write delegation of a file, SeMiNAS does

not have to write cached dirty blocks of the file back to

the cloud until the delegation is recalled. Without the write

delegation, SeMiNAS has to write dirty data backs upon file

close to maintain NFS’s close-to-open consistency. To avoid

bursty I/O requests and long latency upon delegation recall

or file close, SeMiNAS also allows dirty data to be written

back periodically at a configurable interval.

4. Implementation

We have implemented a prototype of SeMiNAS in C and

C++ on Linux. We have tested our implementation thor-

oughly using functional unit tests and ensured our prototype

passed all xfstests [69] cases that are applicable to NFS.



NFS-Ganesha. Our SeMiNAS prototype is based on NFS-

Ganesha [11, 20], an open-source user-level NFS server.

NFS-Ganesha provides a generic interface to file system im-

plementations with a File System Abstraction Layer (FSAL),

which is similar to a Virtual File System (VFS) in Linux.

With different FSAL implementations, NFS-Ganesha can

provide NFS services to clients using different back-ends

such as local and distributed file systems. NFS-Ganesha’s

FSAL implementations include FSAL VFS that uses a local

file system as back-end, and FSAL PROXY that uses another

NFS server as back-end. We use FSAL VFS for the cloud

NFS server, and FSAL PROXY for our SeMiNAS proxy.

Like their stackable counterparts in Linux [71], FSALs

can also be stacked to add features in a modular manner.

For example, an FSAL for encryption can be stacked on top

of FSAL PROXY. NFS-Ganesha originally allowed only one

stackable layer; we added the support of multiple stackable

layers [47]. NFS-Ganesha configures each exported direc-

tory and its backing FSAL separately in a configuration file,

allowing SeMiNAS to specify security policies for each ex-

ported directory separately.

Authenticated Encryption. We implemented SeMiNAS’s

authenticated encryption in an FSAL called FSAL SECNFS.

We used cryptopp as our cryptographic library because

it supports a wide range of cryptographic schemes such

as AES, GCM, and VMAC [59]. We used AES as the

block cipher for GCM. We implemented the NFS DIX

in NFS-Ganesha so that ciphertext and the security meta-

data can be transmitted together between SeMiNAS proxies

and the cloud. First, we implemented the READ PLUS and

WRITE PLUS operations of NFSv4.2 [58] so that the out-of-

band DIX bytes can be transfered together with file block

data in one request. Then, at the proxy side, we changed

FSAL PROXY to use READ PLUS and WRITE PLUS for com-

munications with the cloud NFS server (Figure 3). Lastly, at

the cloud side (running FSAL VFS), we changed FSAL VFS

to use WRITE PLUS and READ PLUS, and to write the ci-

phertext and security meta-data together to storage devices.

Currently, Linux does not have system calls to pass file data

and their DIX bytes from user space to kernel; so we used a

DIX kernel patchset [50] after we fixed its bugs.

We implemented FSAL SECNFS carefully to avoid any

side effects caused by the security meta-data. For example,

updating meta-data in a file header has the side effect of

changing the file’s ctime and mtime, with an unexpected

consequence of invalidating NFS clients’ page cache and

hurting performance: an NFS client uses ctime to check the

validity of an NFS file’s page cache; an external change of

ctime implies the file has been modified by another NFS

client, and demands the client to invalidate the cache to

prevent reading stale data. To avoid this inadvertent cache

invalidation, FSAL SECNFS maintains the effective ctime

and mtime in the file header instead of using the real ctime

and mtime attributes of the file.

We also implemented two additional performance opti-

mizations in FSAL SECNFS: (1) We cache the file key (FK)

and the 〈SID, EFK〉 pairs in memory to reduce the frequency

of expensive RSA decryptions of FKs. This is secure be-

cause FSAL SECNFS runs in the trusted SeMiNAS proxies.

(2) We use the faster VMAC [9, 59] (3.2× faster on our

testbed) instead of GCM when only integrity (but not en-

cryption) is required.

Caching. The persistent caching file-system layer of SeM-

iNAS is implemented as another FSAL named FSAL PCACHE.

Because FSAL PCACHE needs to write back dirty data using

separate threads, we implemented FSAL PCACHE on top of

a home-built external caching library to avoid complicating

NFS-Ganesha’s threading model. The caching library pro-

vides caching (lookup, insert, invalidate, etc.) and write-back

APIs for FSAL PCACHE. When inserting dirty blocks of a file

into the cache using this library, FSAL PCACHE registers a

write-back callback function along with the dirty buffer to

the library. The callbacks are invoked periodically as long

as the file remains dirty. When closing a file, FSAL PCACHE

calls the write-back function directly, and deregisters the

callback to the library.

Lines of Code. The implementation of our SeMiNAS pro-

totype took about 25 man-months (of serveral graudate stu-

dents over 3 years), and added around 13,000 lines of C/C++

code. In addition, we have fixed bugs and added the multi-

layer stacking feature in NFS-Ganesha; our patches have

been merged into the mainstream NFS-Ganesha. We have

also fixed bugs in the DIX kernel patchset. We plan to re-

lease all code as open source in the near future.

5. Evaluation

We now present the evaluation of SeMiNAS under different

configurations, workloads, and network settings.

5.1 Experimental Setup

Our testbed consisted of seven Dell R710 machines running

CentOS 7.0 with a 3.14 Linux kernel. Each machine has a

six-core Intel Xeon X5650 CPU, a Broadcom 1GbE NIC,

and an Intel 10GbE NIC. Five machines run as NFS clients

and each of them has 1GB RAM. Both remaining machines

have 64GB: one of them runs as a SeMiNAS proxy and the

other emulates a cloud NFS server. Clients communicated

to the proxy using the 10GbE NIC, whereas the proxy com-

municated to the server using the 1GbE NIC (to simulate

a slower WAN). The average RTT between the clients and

the SeMiNAS proxy is 0.2ms. The SeMiNAS proxy uses an

Intel DC S3700 200GB SSD for the persistent cache. We

emptied the cache before each experiment to observe the

system’s behavior when an initial empty cache is gradually

filled. We used 4KB as the block size of SeMiNAS.

To better emulate the network between the SeMiNAS

proxy and the cloud, we injected 10–30ms delays in the
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Figure 4. Aggregate throughput of baseline and SeMiNAS with 4KB I/O size, 5 NFS clients, and one thread per client under

different read-write ratios and network delays.

outbound link of the server using netem; 10ms and 30ms

are the average network latencies we measured from our

machines to in-state data centers and the closest Amazon

data center, respectively. We patched the server’s kernel with

the DIX support [50] (with our bug fixes) that allows DIX

bytes to be passed from user space to kernel.

Physical storage devices that support DIX are still rare [25],

so we had to set up a 20GB DIX-capable virtual SCSI

block device backed by RAM using targetcli [45]. Us-

ing RAM, instead of a disk- or flash-backed loop device,

allowed us to emulate the large storage bandwidth provided

by distributed storage systems in the cloud. Although us-

ing RAM fails to account for the server-side storage latency,

the effect is minor because the Internet latency (typically

10–100ms) usually dwarfs the storage latency (typically 1–

10ms), especially considering the popularity of cloud in-

memory caching systems such as RAMcloud [48] and Mem-

cached [17]. If storage latency in the cloud was counted, the

extra latency added by SeMiNAS’s security mechanisms

would actually be smaller relative to the overall latency;

hence the results we report here are more conservative. The

DIX-capable device was formatted with ext4, and exported

by NFS-Ganesha using FSAL VFS.

We verified that all SeMiNAS’s security features work

correctly. To test integrity, we created files on a client,

changed different parts of the files on the cloud server, and

verified that SeMiNAS detected all the changes. To test en-

cryption, we manually confirmed that file data was an un-

readable ciphertext when reading directly from the server,

but its plaintext was identical to what was written by clients.

We used the vanilla FSAL PROXY as baseline. FSAL PROXY

uses up to 64 concurrent requests each with a 2MB-large

RPC buffer. We benchmarked two cases—with and without

the persistent cache (FSAL PCACHE) for both the baseline

and SeMiNAS. We benchmarked a set of simple synthetic

micro-workloads, and Filebench [16] macro-workloads in-

cluding the NFS Server, Web Proxy, and Mail Server.

5.2 Micro-Workloads

We benchmarked SeMiNAS using three micro-workloads:

(1) random file accesses with different read-write ratios, (2)

file creation, and (3) file deletion.

5.2.1 Read-Write Ratio Workload

Read-write ratio is an important workload characteristic that

influences the performance impact of SeMiNAS’s security

mechanisms and the persistent cache (FSAL PCACHE). We

studied read-write ratios from write-intensive (1:5) to read-

intensive (5:1) to cover common ratios in real workloads [32,

52]. We pre-allocated 100 1MB-large files for each of the

five NFS clients, and then repeated the following opera-

tions for two minutes: randomly pick one file, open it with

O SYNC, perform n 4KB reads and m 4KB writes at random

offsets, and close it. We varied n and m to control the read-

write ratio. We also ensured n+m is a constant (i.e., 60) so

that dirty contents are written back in the same frequency.

Figure 4 shows the results when the read-write ratios are

1:1, 5:1, and 1:5. Overall, the configurations with caching

outperform their “nocache” counterparts. For the 1:1 read-

write ratio, caching speeds the workloads up by 4–6×. The

degree of speed-up grows to 9–16× as the workload be-

comes read-intensive (Figure 4(b)), but drops to 3–4× as the

workloads become write-intensive (Figure 4(c)). The cache’s

help to writes is smaller than to reads because SeMiNAS has

to write dirty writes back to the cloud server upon file close,

so that clients in other offices can observe the latest changes.

To better illustrate the performance impact of SeMiNAS,

we show SeMiNAS’s relative throughput to the baseline in

Figure 5. When it is write-intensive, SeMiNAS can be up

to 3% faster than the baseline regardless of the presence

of FSAL PCACHE. This is because the baseline uses extra

COMMITs following WRITEs to make write operations sta-

ble, whereas SeMiNAS does so by simply setting the sta-

ble flag of WRITE PLUS requests. The normalized through-

put of SeMiNAS drops as the workload becomes more read-

intensive (Figure 5(a)) for two reasons: (1) the effect of sav-

ing COMMITs becomes smaller as the number of writes goes

down; and (2) SeMiNAS has to authenticate and decrypt (en-

crypt) data when reading from (writing to) the cloud server.

When cache is on (Figure 5(b)), the normalized through-

put decreases much slower and is almost flat. This is be-

cause (1) the cache content is in plaintext format and reading

from cache needs no more authentication or decryption; and

(2) writes are acknowledged once dirty data is inserted into

the cache and the real write-back happens asynchronously.
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Figure 5. Relative throughput of SeMiNAS to the baseline

under 10ms, 20ms, and 30ms network delays.
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Figure 6. Throughput of creating empty files in a 10ms-

delay network with one NFS client.

Note that the normalized throughput of SeMiNAS is bet-

ter for longer network delay no matter if the cache is on or

off. This is because SeMiNAS is optimized for wide-area

environments and minimizes the number of round trips be-

tween the proxy and the cloud.

5.2.2 File-Creation Workload

Depending on the number of threads, SeMiNAS has differ-

ent performance impact over the baseline for file creation.

As shown in Figure 6, SeMiNAS has only negligible perfor-

mance impact when there are only one or ten threads. Sur-

prisingly, SeMiNAS makes file creation 35% faster than the

baseline when the number of threads grows to 100. This is

caused by the TCP connection between the proxy and the

server, particularly due to the TCP Nagle algorithm [63]. The

algorithm adds extra delay to outbound packets in the hope

of coalescing multiple small packets into fewer, larger ones;

TCP Nagle trades off latency for bandwidth. This trade-off

hurts the baseline performance of this file-creation work-

load, which is meta-data intensive and generates many small

network packets. In contrast, the algorithm favors SeMi-

NAS because SeMiNAS uses compound procedures to pack
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Figure 7. Throughput of deletion of 256KB files, with one

NFS client and 100 threads.

file creations and extra secure operations (e.g., creating file

headers) together to form larger packets.

The number of threads influences the performance be-

cause all threads share one common TCP connection be-

tween the proxy and the server. More threads bring more co-

alescing opportunities; otherwise, the extra waiting of TCP

Nagle is useless if the current request is blocked and no other

requests are coming. To verify this explanation, we tem-

porarily disabled TCP Nagle by setting the TCP NODELAY

socket option, and observed that SeMiNAS’s throughput be-

came about the same (99%) as the baseline thereafter.

Figure 6 also shows that, as expected, the persistent cache

(FSAL PCACHE) does not make a difference in file creation

because FSAL PCACHE caches only data, but not meta-data.

5.2.3 File-Deletion Workload

Figure 7 shows the results of deleting files, where SeM-

iNAS have the same throughput as the baseline with and

without the persistent cache. This is because SeMiNAS does

not incur any extra operations upon file deletion. However,

adding FSAL PCACHE makes file deletion 12–18% slower.

This is because FSAL PCACHE needs one extra lookup op-

eration to delete a file. FSAL PCACHE uses file handles as

unique keys of cached content, but the file deletion function

(i.e., unlink) uses the parent directory and file name, rather

than the file handle, to specify the file. Those extra lookups

could be saved if FSAL PCACHE maintains a copy of the file-

system namespace, which we left as future work.

5.3 Macro-Workloads

We evaluated SeMiNAS using three Filebench macro-workloads:

(1) NFS Server, (2) Web Proxy, and (3) Mail Server.

5.3.1 Network File-System Server Workload

Filebench’s NFS-Server workload emulates the I/O activities

experienced by an NFS server. We used the default settings

of the workload, which contains 10,000 1KB-to-1700KB-

large files totalling 2.5GB. The read sizes of the workload

range from 8K to 135K with 85% reads 8KB-large; the

write sizes range from 9K to 135K with 50% writes 9KB- to

15KB-large. The workloads perform a variety of operations

including open, read, write, append, close, create, and delete.

Figure 8 shows the results of running this workload.

Without cache, the baseline proxy’s throughput decreases
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Figure 8. Throughput of Filebench NFS-Server workload,

with one benchmarking client and one thread.

from 70 ops/sec to 25 ops/sec as the network latency be-

tween the proxy and the server increased from 10ms to

30ms. After adding the persistent data cache, the baseline

throughput increases but only slightly. The performance

boost of caching is small because the workload contains

many meta-data operations that cannot be cached; for exam-

ple, open and close operations have to talk to the server in

order to maintain close-to-open consistency.

In this NFS-Server workload, SeMiNAS is 8–17% and

18–26% slower than the baseline without and with cache,

respectively. As the network delay grows, the performance

penalty of SeMiNAS becomes smaller regardless of the pres-

ence of cache. This is because we optimized SeMiNAS for

wide-area environment by minimizing the number of round

trips between the proxy and the cloud server.

We noticed that adding cache to SeMiNAS actually

makes the performance slightly worse (the last two bins

in each group of Figure 8). This is because FSAL PCACHE

makes file deletions slower with extra lookups (see Sec-

tion 5.2.3), and file deletions count for as much as 8% of

all WAN round trips in this workload. The extra lookups in-

curred by file deletions are also one of the reasons why the

cache’s performance boost to the baseline is small, although

a lookup in the baseline is cheaper than in SeMiNAS (be-

cause SeMiNAS needs extra bookkeeping during lookups).

5.3.2 Web-Proxy Workload

Filebench’s Web-Proxy workload emulates the I/O activities

of a simple Web-Proxy server, which fits well with SeMi-

NAS’s proxy architecture. The workload has a mix of file

creation, deletion, many open-read-close operations, and a

file append operation to emulate logging. The default Web-

Proxy workload has 10,000 files with an average size of

16KB in a flat directory, and 100 benchmarking threads. We

made three changes to the default settings: (1) we placed

the files in a file-system directory tree with a mean direc-

tory width of 20 because a flat directory made the baseline

so slow (around 20 ops/sec) that SeMiNAS did not show

any performance impact at all; (2) we enlarges the average

file size to 256KB so that the working set size (2.56GB) is

more than twice the size of the NFS client’s RAM (1G) but

smaller than the size of the persistent cache; and (3) we used

a Gamma distribution [62, 65] to control the access pattern
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Figure 9. Web-proxy results with different access patterns,

one NFS client, and 100 threads. A larger value of the shape

parameter means less locality in the access pattern.

of the files, but varied the Gamma’s shape parameter (k) to

emulate access patterns with different degrees of locality.

Figure 9 shows the Web-Proxy workload results. With

10ms network delay, the throughput of “baseline-nocache”

drops from 910 to 630 ops/sec as the degree of work-

load locality decreases. The “seminas-nocache” curve in

Figure 9(a) has a similar shape to its baseline counter-

part, but at 11–18% lower throughputs as a result of ex-

tra security mechanisms in SeMiNAS. With high locality

(k <= 1), adding FSAL PCACHE (blue circle curve) actu-

ally slows down the baseline (red diamond curve) because

(1) FSAL PCACHE is not useful when most reads are served

from the client’s page cache; and (2) FSAL PCACHE also in-

troduces extra overhead for file deletions. Conversely, as the

locality drops (k = 10), the client’s page cache becomes less

effective and the persistent cache, which is larger than the

working set size, becomes effective.

Figure 9(a) shows that SeMiNAS actually makes the

workload up to 15% faster than the baseline when there

is a cache (i.e., the green triangle curve is higher than the

orange rectangle curve). This is because SeMiNAS makes

file creations faster in this highly-threaded workload thanks

to the TCP Nagle algorithm (see Section 5.2.2).

For a slower network of 30ms latency (Figure 9(b)), the

throughputs of baseline and SeMiNAS are both slower than

in the faster network (10ms). However, the relative order of

the four configurations remains the same. Without the cache,

SeMiNAS has a small performance penality of 4–6%; with

the cache, SeMiNAS sees a performance boost of 9–19%.

5.3.3 Mail-Server Workload

Filebench’s Mail-Server workload emulates the I/O activity

of an mbox-style e-mail server that stores each e-mail in a

separate file. The workload consists of 16 threads, each per-

forming create-append-sync, read-append-sync, read, and

delete operations on a fileset of 10,000 16KB files.

We used this Mail-Server workload to test the scalabil-

ity of SeMiNAS by gradually increasing the number of NFS

clients. As shown in Figure 10, both the baseline and SeMi-

NAS scales well as the number of clients grows. The relative
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Figure 10. Filebench Mail Server throughput results.

order and trend of the four curves in Figure 10 share simi-

larity with the curves of the Web-Proxy workload results for

similar reasons. In terms of relative speed to the baseline,

SeMiNAS is 1–11% slower without cache, and is between

17% slower (fewer clients) and 12% faster (more clients)

with cache depending on the network delay and effective-

ness of TCP Nagle algorithm (see Section 5.2.2).

6. Related Work

SeMiNAS is related to (1) secure distributed storage sys-

tems, (2) cloud NAS, and (3) cloud storage gateways.

Secure distributed storage systems. SFS [37], Cepheus [29],

SiRiUS [23], and SUNDR [33] are cryptographic file sys-

tems that provide end-to-end file integrity and confidential-

ity with minimal trust on the server; but they all used remote

servers as block stores instead of file-system servers, and

none of them took advantage of NFSv4, which was not in-

vented at the time. SeMiNAS’ sharing of file keys (FK) is

similar to SiRiUS [23]. However, because access control is

enforced by the trusted middleware, SeMiNAS needs only

one key per file instead of two (one for reading and the other

for writing) in SiRiUS. NASD [22] and SNAD [41] add

strong security to distributed storage systems using secure

distributed disks. In both NASD’s and SNAD’s threat mod-

els, disks are trusted; these are fundamentally different from

threat models in the cloud where storage hosts are physically

inaccessible by clients and thus hard to be trusted.

Cloud NAS. Panache [35] is a parallel file-system cache

that enables efficient global file access over WANs but with-

out WAN’s fluctuations and latencies. It uses pNFS to read

data from remote cloud servers and caches them locally

in a cache cluster. Using NFS, Panache enjoys the strong

consistency of file system API. However, its main focus

is high performance with parallel caching, instead of secu-

rity. Cloud NAS services are provided by companies such as

Amazon [26], SoftNAS [56] and Zadara Storage [70]. These

services focus on providing file system services in public

clouds. These cloud NAS service providers control and trust

the ultimate storage devices, whereas SeMiNAS cannot con-

trol or trust the devices. FileWall [55] combines the idea

of network firewalls with network file systems, and pro-

vides file access control based on both network context (e.g.,

IP address) and file system context (e.g., file owner). File-

Wall can protect cloud NAS servers from malicious clients,

whereas SeMiNAS is for protecting clients from clouds.

Cloud storage gateways. Using the cloud as back-end, a

cloud gateway gives a SAN or NAS interface to local clients,

and can provide security and caching features. There are

several cloud gateway technologies, in both industry and

academia. In academia, Hybris [13], BlueSky [61], and

Iris [57] are examples of cloud storage gateway systems that

provide integrity. Hybris additionally gives fault tolerance by

using multiple cloud providers, whereas BlueSky also pro-

vides encryption. BlueSky and Iris have a file system inter-

face on the client side, and Hybris provides a key-value store.

However, none of them uses a file system API for cloud com-

munication, and thus they offer only a weaker model—the

eventual consistency model that usually uses a RESTful API.

In the storage industry, NetApp SteelStore [44] is a cloud in-

tegrated storage for backup. Riverbed SteelFusion [51] pro-

vides a hyper-converged infrastructure with WAN optimiza-

tion, data consolidation, and cloud back-ends. The exact

security mechanisms of SteelStore and SteelFusion are not

publicly known although they claim to support encryption.

7. Conclusions

We presented the design, implementation, and evaluation

of SeMiNAS, a secure middleware using cloud NAS as

back-end. SeMiNAS provides end-to-end data integrity and

confidentiality while allowing files to be securely shared

among geo-distributed offices. SeMiNAS uses authenticated

encryption to safely and efficiently encrypt data and gen-

erate MACs at the same time. SeMiNAS is optimized for

WANs and has a persistent cache to hide high WAN laten-

cies. SeMiNAS leverages advanced NFSv4 features, includ-

ing Data Integrity eXtention (DIX) and compound proce-

dures, to manage its secure meta-data without incurring ex-

tra network round trips. Our benchmarking with Filebench

workloads showed that SeMiNAS has a performance penalty

less than 26%, and occasionally improve performance by up

to 19% thanks to its effective use of compound procedures.

7.1 Limitations and Future Work

SeMiNAS does not handle attacks based on side-channel

information or file-access patterns. SeMiNAS is vulnerable

to replay attacks, which usually requires building a Merkle

tree [40] for the entire file system and is thus expensive

in WANs. We are developing an efficient scheme to thwart

replay attacks. We are also adding file-name encryption and

anti-virus scanning of file content.
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