
Adding Secure Deletion to Your Favorite File System
Nikolai Joukov and Erez Zadok

Stony Brook University
Appears in the proceedings of the third international IEEE Security in Storage Workshop (SISW 2005)

Abstract
Files or even their names often contain confidential or
secret information. Most users believe that such infor-
mation is erased as soon as they delete a file. Even those
who know that this is not true often ignore the issue. Nev-
ertheless, recovering deleted files is trivial and can be
performed even by novice hackers. The problem is ex-
acerbated by the widespread of portable and mobile stor-
age devices. This type of unwanted after-deletion data
recovery is in part an education problem. Users believe
that deleted files are erased, even though they are not.
Retraining and educating users is difficult. Therefore,
storage systems should behave appropriately—the data
should be erased from the storage on a per-delete basis.

We found that existing solutions are either inconve-
nient, inefficient, or insecure. We have designed Purgefs:
a file system extension that transparently overwrites files
on the per-delete basis. Purgefs can be automatically
added to a number of existing and future file systems,
including networked and stackable file systems. Purgefs
supports multiple policies to trade-off performance with
the level of purging guarantees. We demonstrate that
Purgefs does not add overheads or perturb users’ activ-
ity under typical user workloads.
Keywords: Security, Unintended data recovery

1 Introduction
After a file is deleted, its data is still stored on the phys-
ical media until the actual data blocks are overwritten.
Sometimes, this allows users to recover a file they mis-
takenly deleted. Unfortunately, a malicious user can
also recover such a deleted file. A local privileged user
can access a low-level device via the /dev interface and
use one of several available software products to get the
whole file or portions of it [6]. Even worse, floppy, flash,
rewritable optical, and hard disks can be discarded, lost,
or stolen. In this case a malicious person can recover the
data using a local machine and a local privileged account.
Overwriting the erased data or a whole disk prevents this
simple method of data recovery, which requires no extra
hardware.

More sophisticated tools can potentially recover the
data even if the data is overwritten [14]. For example,
disk head positioning over a track is not perfect. A single
data overwrite operation is likely to overwrite a track that
is slightly misaligned relative to the original data track.

This means that even after a track is overwritten, there
may exist a narrow portion of the track with the origi-
nal information intact. Therefore, hardware tools can be
used to read the narrow track of data that was not over-
written. Overwriting the data multiple times makes such
a recovery more difficult.

This after-delete data recovery is counterintuitive to
most users. A majority of users want deleted files to be
permanently erased, and they believe that deleted files are
physically erased [22]. This can lead to the situation that
media with financial or otherwise sensitive information
can be treated as cleared and “safe-to-lose” by the users.
For example, every third hard drive resold on eBay con-
tains confidential information such as credit card or med-
ical records [7]. That is why government agencies and
some businesses require proper sanitation of the physical
media that was used to store sensitive information [9, 23].
However, as in the case of many security-related prob-
lems, security must be balanced with convenience and
performance. Therefore, solutions to the problem vary
for different situations. Generally, there are six solutions
to the problem of recovery of deleted data:

1. Magnetic media can be degaussed; more gener-
ally the storage media can be destroyed. In terms
of possible data recovery, this is the most reliable
data-erasure method. Unfortunately, this solution
is either expensive because the storage itself is de-
stroyed, or it is not secure enough if not performed
every time sensitive data is deleted.

2. All the file system data can be encrypted. This pro-
tects deleted as well as non-deleted data. However,
this solution has a problem of key management that
is common for all encryption systems (i.e., the key
safety and revocation). In addition, certain forms
of encryption are not legal in some countries. En-
cryption is also CPU intensive, and adds overheads
for many file system operations—not just erasure-
related operations [28].

3. Overwriting of the whole storage media is simple.
It can be performed entirely from the user mode or
even assisted at the hardware level. Unfortunately,
overwriting a whole file system is inconvenient, be-
cause all files are erased (even those the user wants
to keep). Therefore, users are likely to refrain from
this procedure.

4. On demand per-file overwriting from the user level

1



can be implemented using library extensions, but
does not overwrite all the meta-data and does not
work with statically linked binaries.

5. Driver-level and firmware-level overwriters cannot
reliably detect delete and truncate operations and
cannot support per-file erasure policies [24].

6. File systems can reliably detect delete and truncate
operations and perform per-file on-demand over-
writing. It is convenient because the data purging
is performed automatically as needed. This method
is secure because all the necessary file system opera-
tions are intercepted. Unfortunately, this method re-
quires modification of every file system that is used
to store sensitive information.

We have designed a system for automatic file system
instrumentation. Our system can automatically add func-
tionality to existing file systems if the file systems’ source
code is available. The instrumentation script parses tar-
get file system code and file system extensions written in
the FiST language [31], then it automatically updates the
file-system’s source code with the new functionality. The
FiST language was originally designed for stackable file
system development and describes file system extensions
in an OS-independent manner. Our instrumentation sys-
tem uses FiST in a more general way, because it allows
us to add new features not only to stackable file systems
but also to any existing and future file system that follows
the required Linux file system API.

We have designed a FiST file system extension we call
Purgefs. Our instrumentation script generates a new file
system using the Purgefs extension code and the code of
target file system as input. Many popular file systems,
especially those used for mobile storage, map the same
file portions to the same storage locations. When in-
strumented with Purgefs, such file systems can overwrite
files’ data and meta-data upon file delete and truncate op-
erations. Overwrite policies can be configured based on
file names, file attributes, or directory attributes. There-
fore, Purgefs overwrites data only as needed, providing
security and convenience with only a minimal perfor-
mance degradation. Because FiST is portable across OSs
and file systems, Purgefs can be applied to most of the ex-
isting and future file systems automatically. In particular,
we have applied it to Ext2 [4], vfat, msdosfs, NFS [17],
and ramfs. If a file system’s source code is not available,
then Purgefs can be applied to a null-layer pass-through
stackable file system [30]. The stackable file system can,
in turn, be mounted over lower file systems and provide
the same Purgefs functionality to the users, with an addi-
tional small overhead.

Purgefs supports policies to trade-off performance for
the level of purging guarantee. For example, multiple
synchronous overwrites can add significant overhead but
are more secure; conversely, a single asynchronous over-

write is less secure but adds much smaller overheads. We
have experimentally demonstrated that in the common
case of a single synchronous overwrite policy and a CPU-
bound workload, Purgefs overheads are undetectable.

The rest of this paper is organized as follows. We
describe prior work in Section 2. Section 3 describes
Purgefs’s design. Section 4 describes our implementa-
tion. We evaluate our system in Section 5. We conclude
in Section 6.

2 Background
Deleted data can be easily found on a disk via the /dev
interface if the deleted file is small and a portion of the
file is known. However, it is necessary to know either
the file structure or the file system structure to recover
large files with unknown data. For example, the Free
Downloads Center [6] offers dozens of programs to re-
cover deleted files from popular file systems.

It is reported that overwritten data on magnetic media
can potentially be recovered using Magnetic Force Mi-
croscopes (MFM) [8]. However, such a method is expen-
sive because it requires microscopes that can scan large
surfaces. A more promising approach is to use a spin-
stand to collect several concentric and radial magnetic
surface images. Later, these images can be processed to
generate a single surface image [14]. However, it is un-
clear if such techniques are feasible. Generally, it is be-
lieved that multiple overwriting of the data can make the
recovery of data much more difficult [10].

There are several ways to prevent the recovery of
erased data. The National Institute of Standards and
Technology (NIST) recommends that magnetic media be
degaussed or overwritten at least three times [9]. The
National Industrial Security Program Operating Man-
ual (NISPOM) describes several methods for clearing or
sanitizing sensitive information [23]. Table 1 lists the
software-based methods. Different methods are applica-
ble to different types of storage. For example, method f
is designed for SRAM-based storages. We do not include
here other NISPOM methods which are hardware-related
as they are not relevant to this paper.

Existing systems to erase the data reliably from the
storage can be roughly divided into six categories:

1. Hardware devices can physically destroy or wipe
out the storage. For example, hardware degaussers
are manufactured by several companies. Such de-
gaussers generate strong magnetic fields that not
only wipe out magnetic information but can also
physically destroy the storage media. Strong mag-
netic fields can bend hard drive platters and make
their rotation impossible [19].

2. Some storage devices, virtual memory subsystems,
and file systems support encryption [15, 20, 21, 29].
For example, NCryptfs is a stackable file system that

2



ID Clearing/sanitizing method
c Overwrite all addressable locations with a single character.
d Overwrite all addressable locations with a character, its complement, then a random character and verify.
e Overwrite all addressable locations with a character, its complement, then a random character.
f Each overwrite must reside in memory for a period longer than the classified data resided.
h Overwrite all locations with a random pattern, all locations with binary zeros, and then with binary ones.

Table 1: Software-based methods of clearing or sanitizing storage defined in the National Industrial Security Program Operating
Manual (NISPOM).

encrypts files, directories, or whole file systems with
individual keys [29]. However, the security of such
encryption systems is not much better than the secu-
rity of the root account. Once the privileged account
is compromised, the encryption keys can be easily
sniffed and used to decrypt both deleted and non-
deleted data. Also, strong encryption is illegal in
some countries and adds non-negligible overheads.

3. Whole partition overwriters are simple to implement
(a one line shell script can overwrite an entire file
system). New ATA drives even support a special
mode for overwriting a whole drive (this feature is
optional for SCSI drives). This can overwrite all
tracks including bad and remapped ones. Also, hard
drive assisted erasure is much faster. Common hard-
ware erasure times are typically 20 or more times
faster on modern hard drives than user-mode over-
writers [11]. Nevertheless, whole file system over-
writers are only suitable for sanitizing a drive before
its disposal. It is inconvenient to overwrite a whole
drive just to delete a single file.

4. There are a number of user mode tools for on-
demand data overwriting [5, 16, 26]. Some of them
substitute utilities like rm with wrappers that over-
write the data prior to deleting a file. Other tools in-
strument common libraries to intercept truncate and
delete operations. Generally, these tools are not se-
cure because they cannot intercept all the programs
or operations that can leave file data on the disk.

5. Driver-level and firmware-level overwriters can
properly locate data on the lower-level storage even
for Journaling and Log-structured file systems. Un-
fortunately, low-level erasers cannot reliably detect
erasure and truncate file system operations [24].
Also, they cannot support per-file erasure policies.

6. The Ext2, Ext3, and Reiserfs file systems, among
others, support a special per-file attribute to mark
files or directories that contain sensitive informa-
tion and require secure deletion. Thus, the following
command can mark a file as sensitive: chattr +s
filename. Unfortunately, the attribute is not cur-
rently used and is maintained for future use. Several
authors proposed patches that add purging function-
ality to particular file systems. For example, Bauer

et. al. modified Ext2 to erase the data and meta-data
on unlink and truncate operations [3].

Incremental addition of OS features and control inter-
ception points is a well developed research area. We will
focus on the four methods most relevant to file systems:

1. A file system source code can be modified directly.
For example, data overwriting functionality was
manually added to the Ext2 file system [3]. This
method has a clear drawback: new code is required
not only for every OS and every file system but also
for different versions of OSs and file systems.

2. Modern OSs provide hooks that allow dynamic in-
strumentation. For example, DTrace [2] on Solaris
and Linux Security Modules [27] on Linux provide
interception points in many places. However, these
instrumentation APIs are not portable across OSs
and do not intercept all file system operations. For
example, memory-mapped operations are not inter-
cepted.

3. Some of the file system operations may be inter-
cepted and changed entirely from the user-mode.
First, system utilities can be substituted with wrap-
per scripts or other binaries. Second, system li-
braries can be instrumented directly. In both cases,
some of the programs will not be instrumented ei-
ther because they are not replaced or because they
are statically linked. Moreover, some file system
operations cannot be changed this way; this includes
popular memory-mapped operations.

4. Stackable file systems are portable across OSs and
across file systems [31]. They can be mounted over
any lower file system, several file systems, or only
a single directory or file. However, stackable file
systems add overheads for all file system operations
even if only a single operation is modified. In addi-
tion, stackable file systems use twice as many Vir-
tual File System objects thus reducing the overall
size of file system caches.

3 Design
Automatically erasing data when files are truncated or
removed balances security and convenience. Such era-
sure must be performed by the file systems because not
all operations can be intercepted. Unfortunately, this re-

3



quires modification of every file system that may be used
to store sensitive data. We have designed Purgefs: a file
system extension which can be automatically applied to
many file systems running on a number of OSs.

Many file systems map the same portion of a file to a
fixed location on the disk. Therefore, overwriting the file
data at the file system level results in overwriting of the
data on the physical storage. Purgefs overwrites file data
and meta-data one or more times using a number of data
patterns for overwriting. For example, it can support all
of the relevant methods shown in Table 1.

Purgefs can overwrite data synchronously or asyn-
chronously. In a simple synchronous mode, Purgefs
blocks until every overwrite operation completes. In
asynchronous mode, Purgefs can remap data pages to a
temporary file and overwrite them later on using a kernel
thread. By remapping only the appropriate data pages,
Purgefs can asynchronously overwrite only a portion of
a file upon truncate operations. Overwriting asynchron-
ously is simple and also improves performance, but may
lower the level of purging guarantee because the file may
not be completely overwritten if the system crashes (e.g.,
because of a power failure).

Overwriting decisions can be customized to better bal-
ance security with performance. Purgefs can overwrite
all files or only files marked with a special attribute us-
ing the chattr +s filename command. The num-
ber of overwrites and the type of overwrite patterns can
be configured as mount-time options. A single overwrite
with any data can prevent recovery in most cases. Mul-
tiple overwrites make recovery using advanced methods
even less probable.

3.1 Automatic Purgefs Addition
Stackable file systems can incrementally add functional-
ity to the lower file systems. Figure 1 shows a Base0fs
stackable file system that passes through all the file sys-
tem operations from the Virtual File System (VFS) to the
lower file system. Unfortunately, stackable file systems

Ext2

base0fs
ext2_unlink()

User Process

Lower file system

unlink()

vfs_unlink()

base0fs_unlink()

Virtual File System (VFS)

U
se

r
Ke

rn
el

Figure 1: Base0fs stackable file system mounted over Ext2.

add overheads to all file system operations. Direct file
system source code instrumentation produces file sys-
tems that run more efficiently, because only the neces-
sary operations are instrumented and the compiler has the
flexibility to optimize the code. Unfortunately, such in-
strumentation requires manual work for every file system
and every OS version. We decided to combine the bene-
fits of both approaches. We have created a script that au-
tomatically instruments a subset of file system operations
directly in the source code. If a file system source code
is unavailable, then the same script can instrument the
Base0fs file system. Base0fs can then be mounted over
a file system whose source code is not available, adding
some overhead but maintaining the same purging func-
tionality.

Figure 2 shows that the instrumentation script pro-
cesses both the target file system and the Purgefs exten-
sion. Based on the information contained in both, Purgefs
generates a new instrumented file system.

Instrumentation script

Original File System

New File System

FiST Extension

Figure 2: Instrumentation script operation.

We have designed our instrumentation script to be flex-
ible. In particular, it supports file system extensions writ-
ten in the FiST language. FiST files have a structure sim-
ilar to the structure of the YACC file format [12]. Every
FiST file consists of three sections separated with a %%
line. The first section contains code and macros added to
a generated header file. The middle section describes op-
erations that require instrumentation. The last section de-
scribes routines for a separate generated source file. FiST
is a C-based language. Because popular OSs are written
in C, this allows direct insertion of C code from FiST files
into the appropriate locations of file system code.

%{
/* print out return values */

%}
%%
%op:all:postcall {

printk("OP_%s: %d (pid: %d)\n",
%op, fistLastErr(), %pid);

}
%%
/* no extra routines are needed */

Figure 3: FiST file system extension that prints out the return
values of every file system operation.

4



static int ext2_writepage(struct page *page, struct writeback_control *wbc)
{

return block_write_full_page(page, ext2_get_block, wbc);
}

static int ext2_writepage(struct page *page, struct writeback_control *wbc)
{
{

int fist_tmp_ret_val = block_write_full_page(page, ext2_get_block, wbc);
printk("OP_%s: %d (pid: %d)\n",

"writepage", fist_tmp_ret_val, current->pid);
return fist_tmp_ret_val;

}
}

Figure 4: Original (top) and generated (bottom) writepage operation of the Ext2 file system.

Figure 3 shows an example FiST file system extension
intended for file system debugging. It adds code that
prints out return values of every file system operation.
Let us consider the actions performed by the instrumen-
tation script to generate the target file system on Linux
for FiST extension shown in Figure 3:

1. The script replaces printk, and %pid with the
strings appropriate for the target OS. for Linux,
printk is kept intact but is replaced with printf
for FreeBSD.

2. The script looks for file system operation vectors de-
clared in the source code.

3. The script creates wrapper functions for operations
that use the generic OS methods.

4. The script adds the requested printk statement be-
fore every return statement of all operations.

5. The script substitutes %op and fistLastErr with
operation-specific strings: the operation name and
the variable name that contain the last error. If
necessary, the return value is converted to the in-
teger form. For example, the PTR ERR() macro is
used under Linux if the previous function returned a
pointer.

Figure 4 shows an original and the generated writepage
operations code for an Ext2 file system. We can see that
the instrumentation script created a temporary variable to
store and report the internal return value.

The instrumentation script converts abstract vnode ob-
jects into objects used by target OSs and refers to file
properties via a unified vnode object. For example, the
script understands that every vnode under Linux is repre-
sented by several objects: file, dentry, and inode. Thus,
the script uses the dentry object to access the file name,
and the inode object to access the file size. At the same
time, developers do not need to know about it and can
assume that these are the abstract vnode properties.

The instrumentation script design allows file system
developers to concentrate on their new concepts or fea-
tures instead of the implementation for every file system

and OS. These actions are done by a single and specific
instrumentation script. For example, currently we are in-
vestigating a general way to overwrite data on journaling
file systems. When completed, we will not need to mod-
ify the instrumentation script, but only modify the FiST
extension. Even better, if some OS property changes, we
will not even need to modify the FiST extension.

4 Implementation
Our current Purgefs prototype consists of only 84 lines of
FiST code. Purgefs synchronously overwrites during the
first N − 1 times (if N > 1) and asynchronously over-
writes during the last overwrite. This implementation al-
lows our current Purgefs prototype to remain simple be-
cause one asynchronous overwrite can be performed us-
ing existing OS functions. This is important because it
allows us to apply Purgefs using the current instrumenta-
tion script implementation. Fortunately, this lets us per-
form the overwriting completely asynchronously in the
most common case of a single overwrite.

Purgefs supports single and triple overwriting modes.
In particular, it supports modes c and e from Table 1. In
the single overwrite mode, it overwrites the data with ze-
roes. In the triple overwrite mode, it overwrites the data
with 0x55, 0xAA, and then random pattern. (0x55 and
0xAA are complementary alternating bit numbers.)

The instrumentation script is written in Perl [25]. We
believe Perl is an appropriate choice because most of the
time the instrumentation process searches the code for
matches of regular expressions—a scenario Perl is es-
pecially suitable for. Aside from string matching and
replacing, the instrumentation system parses only small
portions of the C code. For example, it determines the
types of functions and their arguments. We found that a
simple top-down parser is sufficient for this purpose.

Our current unified instrumentation script can instru-
ment Linux 2.4, Linux 2.6, and FreeBSD 5.4 file systems.
It consists of 305 lines of Perl code. We have successfully
applied and verified the functionality of Purgefs with all
the non-journaling file systems we tried. In particular, we

5



instrumented the following six file systems:
Ext2 (Linux) which is commonly used on Linux.
vfat (Linux) and msdosfs (FreeBSD) which are usually

used on portable FLASH drives.
ramfs (Linux) to purge files from memory (policy h

from Table 1 is not enforced).
NFS (Linux, FreeBSD) allows instrumentation on the

client side without instrumenting the server side.
Base0fs (Linux, FreeBSD) is a stackable file system

which can be mounted over any other file systems
whose source code is unavailable.

5 Evaluation
We evaluated our system on a P4 1.7GHz machine with
1GB of memory. Its system disk was a 30GB 7200 RPM
Western Digital Caviar IDE and was formatted with Ext3.
In addition, the machine was equipped with one 18.4GB
Ultra320 SCSI disk formatted with Ext2. We used this
separate SCSI disk for running the benchmarks.

We remounted the test file systems before every bench-
mark run to purge file system caches. We ran each test at
least ten times and used the Student-t distribution to com-
pute the 95% confidence intervals for the mean elapsed,
system, user, and wait times. Wait time is the elapsed
time less CPU time used and consists mostly of I/O, but
process scheduling can also affect it. In each case, the
half-widths of the confidence intervals were less than 5%
of the mean. The test machine was running a Fedora
Core 3 Linux distribution with a vanilla 2.6.11.7 kernel.

We evaluated and compared the following three con-
figurations: vanilla Ext2 (EXT2); Ext2 instrumented with
secure delete functionality with the overwrite-once pol-
icy (EXT2PURGE-C); and overwrite three times accord-
ing to method e of Table 1 (EXT2PURGE-E). We chose
Ext2 because it is a popular file system for manual exten-
sion with secure delete functionality. Therefore, future
and past developers may conveniently compare their sys-
tems with Purgefs’s overheads.

5.1 CPU-Bound Workload
First, we evaluated Purgefs under a compile workload—a
CPU-intensive workload that is similar to the workloads
generated during normal user activities (i.e., more CPU
activity generated than file system I/O activity). We com-
piled the Am-utils [18] package version 6.1.1 using the
EXT2, EXT2PURGE-C, and EXT2PURGE-E configu-
rations and compared the overheads of the instrumented
Ext2 with vanilla Ext2.

Am-utils contains over 60,000 lines of C code in 430
files. The build process begins by running several hun-
dred small configuration tests to detect system features.
It then builds a shared library, ten binaries, four scripts,
and documentation: a total of 152 new files and 19 new
directories. Although the Am-utils compile is CPU inten-

 0

 50

 100

 150

 200

 250

 300

EXT2PURGE-EEXT2PURGE-CEXT2

El
ap

se
d 

tim
e 

(s
ec

)

Configuration

232.1 233.8

312.4Wait
User

System

Figure 5: Am-utils build times.

sive, it contains a fair mix of file system operations. We
used Tracefs [1] to measure the exact distribution of op-
erations. The Am-utils build process uses 25% writes,
22% lseek operations, 20.5% reads, 10% open opera-
tions, 10% close operations, and the remaining opera-
tions (12.5%) are a mix of readdir, lookup, etc. Most
importantly for us, the build process deletes 4,696 files
during these phases.

Figure 5 shows the measured build times. As we
can see, Purgefs in asynchronous single-overwrite mode
does not add any noticeable overheads under the CPU-
intensive workloads. The EXT2PURGE-E configuration
has a noticeable 35% elapsed time overhead because the
first two writes are performed synchronously. Because
this overhead is mostly I/O, faster disks will improve
Purgefs performance.

5.2 I/O-Bound Workload

We evaluated our system using an I/O-intensive workload
generator. Postmark [13] simulates the operation of elec-
tronic mail servers. It performs a series of file appends,
reads, creations, and deletions. We configured Postmark
to create 20,000 files, between 512–1M bytes, and per-
form 200,000 transactions. We selected the create/delete
and read/write operation ratios with equal probability.

Naturally, Purgefs adds wait time overheads under I/O-
intensive workloads because the operation is I/O-bound
and erasing operations compete with other I/O opera-
tions. As we can see in Figure 6, EXT2PURGE-C is 81%
slower and EXT2PURGE-E is 22 times slower than the
vanilla Ext2. Such high overheads are caused not only
by the I/O-bound nature of the workload but also by the
fact that every fourth operation is a deletion. We believe
that 81% overhead even under such severe workload con-
ditions is a promising result showing that Purgefs over-
heads may be acceptable in most cases.

6



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

EXT2PURGE-EEXT2PURGE-CEXT2

El
ap

se
d 

tim
e 

(s
ec

)

Configuration

584.2
1059.3

12903.2Wait
User

System

Figure 6: Postmark benchmark times.

5.3 File System Generation Time
Finally, we evaluate the efficiency of the instrumentation
program. It is less important than the runtime overheads.
However, short instrumentation times are more desirable
for file system developers. At first glance it may seem
that the process of file system generation can take a con-
siderable amount of time. Indeed, the generation process
requires at least two scans of the file system source code.
Table 2 shows the times necessary to add secure dele-
tion functionality to several popular file systems and their
compilation times. Note that the overheads of compila-
tion times were indistinguishable. As we can see, in all
the cases, the instrumentation times were much smaller
than the compilation times of these file systems. There-
fore, the instrumentation time can be considered small.

File system Instrumentation Compilation
time (seconds) time (seconds)

Ext2 1.2 14.6
vfat 1.1 6.1
msdosfs 1.2 5.8
NFS 1.3 16.5
ramfs 1.2 6.0
Base0fs 1.3 11.7

Table 2: Purgefs’s instrumentation time for several file sys-
tems, and the original compilation times of these file systems.

6 Conclusions
Secure erasure of file data from the storage, upon file
delete, is consistent with users’ perception of what a
delete operation should do. Unfortunately, existing file
systems do not provide this guarantee.

We have designed Purgefs—a highly portable, secure,
and convenient data-purging system for everyday use.
Purgefs is portable because it is designed as a file sys-
tem extension which can be automatically added to most
existing file systems. Purgefs is secure because it per-

forms data purging immediately after every delete and
truncate operation. Purgefs is convenient because it op-
erates transparently; and it is relatively efficient because
it operates asynchronously if desired.

Purgefs can be used with any block-based and
network-based file system that maps the same file por-
tions to the same storage location. We have tried and
successfully tested Purgefs with the Ext2, vfat, msdosfs,
ramfs, NFS, and Base0fs file systems. Ext2, vfat, and
msdosfs are frequently used for mobile storage, where se-
cure deletion is especially critical. NFS instrumentation
demonstrates that Purgefs’s client-side use is sufficient
for secure deletion purposes. The Base0fs file system al-
lows Purgefs to be used with file systems whose source
code is unavailable. Moreover, many other existing and
future file systems can be instrumented without any addi-
tional development efforts.

We have demonstrated that under non-intensive work-
loads typical for users, Purgefs’s operation is completely
non-intrusive and its overheads are negligible. We have
shown that even under severe I/O-intensive and delete-
intensive workloads, Purgefs has reasonable overheads in
configurations that sufficient for most users: the single-
overwrite mode.

Future Work. We are currently investigating more so-
phisticated approaches which will allow us to use Purgefs
with journaling and log-structured file systems. For ex-
ample, we are investigating instrumentation of the device
drivers in addition to file systems, and the Linux Journal-
ing (JBD) API.

Our instrumentation system can have a broader appli-
cation. In particular, it can be used to add many different
features to file systems if extended to support a wider set
of FiST language primitives. For example, we plan to
implement an encryption file system extension.

The instrumentation system can be ported to a number
of OSs (e.g., Solaris). Also, a more advanced instrumen-
tation system will enable us to decrease the Purgefs over-
heads further and use more sophisticated asynchronous
modes. Lastly, Purgefs can be easily extended to support
more overwriting modes and patterns.

Acknowledgments

This work was partially made possible by NSF CAREER
award EIA-0133589, NSF Trusted Computing Award
CCR-0310493, and HP/Intel gift numbers 87128 and
88415.1. We would like to thank Charles P. Wright for
his help with the paper’s preparation.

7



References
[1] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A

File System to Trace Them All. In Proceedings of the
Third USENIX Conference on File and Storage Technolo-
gies (FAST 2004), pages 129–143, San Francisco, CA,
March/April 2004. USENIX Association.

[2] B. Cantrill and M. W. Shapiro and A. H. Leventhal. Dy-
namic Instrumentation of Production Systems. In Pro-
ceedings of the Annual USENIX Technical Conference,
pages 15–28, 2004.

[3] S. Bauer and N. B. Priyantha. Secure Data Deletion for
Linux File Systems. In Proceedings of the 10th Usenix
Security Symposium, pages 153–164, Washington, DC,
August 2001. USENIX Association.

[4] R. Card, T. Ts’o, and S. Tweedie. Design and imple-
mentation of the second extended filesystem. In Pro-
ceedings to the First Dutch International Symposium on
Linux, Seattle, WA, December 1994.

[5] CyberScrub Secure File Deletion / Internet Privacy Util-
ity. www.cyberscrub.com.

[6] Free Downloads Center. Linux Disk DoD.
www.freedownloadscenter.com/Best/
linux-disk-dod.html.

[7] S. Garfinkel and A. Shelat. Remembrance of Data Passed:
A Study of Disk Sanitization Practices. IEEE Security
and Privacy, 1(1):17–27, January 2003.

[8] R. Gomez, A. Adly, I. Mayergoyz, and E. Burke. Mag-
netic Force Scanning Tunnelling Microscope Imaging
of Overwritten Data. IEEE Transactions on Magnetics,
28(5):3141–3143, September 1992.

[9] T. Grance, M. Stevens, and M. Myers. Guide to Selecting
Information Security Products, chapter 5.9: Media San-
itizing. National Institute of Standards and Technology
(NIST), October 2003.

[10] P. Gutmann. Secure Deletion of Data from Magnetic and
Solid-State Memory. In Proceedings of the Sixth USENIX
UNIX Security Symposium, pages 77–90, San Jose, CA,
July 1996. USENIX Association.

[11] G. Hughes. CMRR Protocols for Disk Drive Se-
cure Erase. Technical report, Center for Magnetic
Recording Research, University of California, San Diego,
October 2004. http://cmrr.ucsd.edu/Hughes/
CmrrSecureEraseProtocols.pdf.

[12] S. C. Johnson. Yacc – Yet Another Compiler-Compiler.
Technical Report CS-TR-32, Bell Laboratories, Murray
Hill, NJ, July 1975.

[13] J. Katcher. PostMark: A New Filesystem Benchmark.
Technical Report TR3022, Network Appliance, 1997.
www.netapp.com/tech_library/3022.html.

[14] I. Mayergoyz, C. Seprico, C. Krafft, and C. Tse. Magnetic
Imaging on a Spin-Stand. Journal of Applied Physics,
87(9):6824–6826, May 2000.

[15] Microsoft Research. Encrypting File System for Win-
dows 2000. Technical report, Microsoft Corpora-
tion, July 1999. www.microsoft.com/windows2000/
techinfo/howitworks/security/encrypt.asp.

[16] Overwrite, Secure Deletion Software. www.kyuzz.org/
antirez/overwrite.

[17] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS version 3 design and im-
plementation. In Proceedings of the Summer USENIX
Technical Conference, pages 137–152, Boston, MA, June
1994.

[18] J. S. Pendry, N. Williams, and E. Zadok. Am-utils User
Manual, 6.1b3 edition, July 2003. www.am-utils.org.

[19] Peripheral Manufacturing Inc. Degaussing (Eras-
ing) Equipment. www.periphman.com/degaussing/
tape-degaussing/.

[20] M. Petullo. Implementing encrypted home directories.
Linux Journal, pages 62–68, August 2003.

[21] N. Provos. Encrypting virtual memory. In Proceedings
of the Ninth USENIX Security Symposium, Denver, CO,
August 2000.

[22] J. Rosenbaum. In Defence of the DELETE Key. The
Green Bag, 3(4), Summer 2000. www.greenbag.org/
rosenbaum_deletekey.pdf.

[23] Defense Security Service. National Industrial Security
Program Operating Manual (NISPOM), chapter 8: Au-
tomated Information System Security. U.S. Government
Printing Office, January 1995.

[24] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Life or Death at
Block-Level. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI
2004), pages 379–394, San Francisco, CA, December
2004. ACM SIGOPS.

[25] L. Wall, H. Stenn, and R. Manfredi. dist-3.0. Technical
report, Comprehensive Perl Archive Network (CPAN),
1997. ftp.funet.fi/pub/languages/perl/CPAN/
authors/id/RAM.

[26] Wipe: Secure File Deletion. http://wipe.
sourceforge.net/.

[27] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah
Hartman. Linux Security Modules: General Security
Support for the Linux Kernel. In Proceedings of the 11th
USENIX Security Symposium, San Francisco, CA, Au-
gust 2002.

[28] C. P. Wright, J. Dave, and E. Zadok. Cryptographic File
Systems Performance: What You Don’t Know Can Hurt
You. In Proceedings of the 2003 IEEE Security In Storage
Workshop (SISW 2003), pages 47–61, Washington, DC,
October 2003.

[29] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A Se-
cure and Convenient Cryptographic File System. In Pro-
ceedings of the Annual USENIX Technical Conference,
pages 197–210, San Antonio, TX, June 2003. USENIX
Association.

[30] E. Zadok. The FiST home page. www.filesystems.
org, 1999.

[31] E. Zadok and J. Nieh. FiST: A Language for Stackable
File Systems. In Proc. of the Annual USENIX Techni-
cal Conference, pages 55–70, San Diego, CA, June 2000.
USENIX Association.

8


