
Increasing Distributed Storage Survivability with a Stackable RAID-like
File System

Nikolai Joukov, Abhishek Rai, and Erez Zadok
Stony Brook University

Appears in the proceedings of the 2005 IEEE/ACM Workshop on Cluster Security, in conjunction with the
Fifth IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2005).

Won the Best Paper Award.

Abstract

We have designed a stackable file system called Re-
dundant Array of Independent Filesystems (RAIF). It
combines the data survivability properties and perfor-
mance benefits of traditional RAIDs with the unprece-
dented flexibility of composition, improved security, and
ease of development of stackable file systems. RAIF
can be mounted on top of any combination of other file
systems including network, distributed, disk-based, and
memory-based file systems. Existing encryption, com-
pression, antivirus, and consistency checking stackable
file systems can be mounted above and below RAIF, to
efficiently cope up with slow or unsecure branches. In-
dividual files can be distributed across branches, repli-
cated, stored with parity, or stored with erasure cor-
rection coding to recover from failures on multiple
branches. Per-file incremental recovery, storage type mi-
gration, and load-balancing are especially well suited for
grid storages.

In this paper we describe the current RAIF design,
provide preliminary performance results and discuss
current status and future directions.

1 Introduction
Redundant Array of Independent Filesystems (RAIF) is
the first RAID-like storage system designed at the file
system level that imposes virtually no restrictions on the
underlying stores and allows per-file storage policy con-
figuration.

For many years, grouping hard disks together to form
RAIDs has been considered a key technique for im-
proving storage survivability and increasing data access
bandwidth [19]. However, most of the existing hard-
ware and software RAID implementations require that
the storage devices underneath be of one type. For exam-
ple, several network stores and a local hard drive cannot
be seamlessly used to create a RAID. RAID configura-
tions are fixed and are the same for all the files because
hardware and software RAIDs operate at the data-block

level, where high level meta-information is not available.
This results in inefficient storage utilization when im-
portant data is stored with the same redundancy level
as less-important data. Other common RAID limitations
are related to long–term maintenance. For example, data
recovery is slow and may require a restart from the very
beginning if interrupted.

There are several implementations of RAID-like file
server systems that operate over a network [7, 25], in-
cluding implementations that combine network and lo-
cal drives [6]. However, past systems targeted some par-
ticular usage scenario and had a fixed architecture. In-
flexibilities introduced at design time often result in sub-
optimal resource utilization. RAIF leverages the RAID
design principles at the file system level, and offers bet-
ter configurability, flexibility and ease of use in manag-
ing data security, survivability, and performance.

RAIF is a fan-out RAID-like stackable file system.
Stackable file systems are a useful and well-known
technique for adding functionality to existing file sys-
tems [34]. They allow incremental addition of features
and can be dynamically loaded as external kernel mod-
ules. Stackable file systems overlay another lower file
system, intercept file system events and data bound from
user processes to the lower file system, and in turn ma-
nipulate the lower file system’s operations and data. A
different class of file systems that use a one-to-many
mapping (a fan-out) has been previously suggested [8,
23] and was recently included in the FiST [30, 34] tem-
plates.

RAIF derives its usefulness from three main features:
flexibility of configurations, access to high-level infor-
mation, and easier administration.

First, because RAIF is stackable, it can be mounted
over any combination of lower file systems. For exam-
ple, it can be mounted over several network file systems
like NFS and Samba, AFS distributed file systems, and
local file systems at the same time; in one such config-
uration, fast local branches may be used for parity in a
RAID4-like configuration. If the network mounts are

1



slow, we could explore techniques such as data recov-
ery from parity even if nothing has failed, because it
may be faster to reconstruct the data using parity than to
wait for the last data block to arrive. Stackable file sys-
tems can be mounted on top of each other. Examples of
existing stackable file systems are: an encryption [31],
data-integrity verification [11], an antivirus [17], and a
compression file system [33]. These file systems can be
mounted over RAIF as well as below it over only some
slow or untrusted branches.

Second, because RAIF operates at the file system
level, it has access to high-level file system meta-data
that is not available to traditional RAIDs operating at
the block level. This meta-data information can be used
to store files of different types using different RAID lev-
els, optimizing data placement and readahead algorithms
to take into account varying access patterns for differ-
ent file types. Dynamic RAIF-level migration offers ad-
ditional benefits. For example, a RAIF mounted over
a RAM-based file system and several network file sys-
tems can serve as a caching file system if the file storage
method changes depending on the file usage frequency.

Third, administration is easier because files are stored
on ordinary unmodified lower-level file systems. There-
fore, the size of these lower file systems can be changed,
they can be easily backed up using standard software.
The data is easier to recover in the case of failure be-
cause it is stored in a more accessible format.

RAIF can concurrently use different redundancy al-
gorithms for different files or file types. For exam-
ple, RAIF can on one hand stripe large multimedia files
across different branches for performance, but use two
parity pages for important financial data files that must
be available even in the face of two failures.

In this paper we introduce this new type of stackable
RAID-like file system design, our current prototype, and
its preliminary evaluation. We describe some general
fan-out design principles that are applicable even beyond
RAIF. The rest of the paper is organized as follows. Sec-
tion 2 outlines the design of RAIF. Section 3 describes
the current status of the project, some interesting imple-
mentation details, and outlines future directions. Sec-
tion 4 presents an evaluation of the current RAIF proto-
type. Section 5 discusses related work. We conclude in
Section 6.

2 Design

2.1 Stackable fan-out file system

Stackable file systems are a technique to layer new func-
tionality on existing file systems. As seen in Figure 1, a
stackable file system is called by the Virtual File System
(VFS) like other file systems, but in turn calls another
file system instead of performing operations on a back-

ing store such as a disk or an NFS server [20]. Before
calling the lower-level file system, stackable file systems
can modify the operation, for example encrypting data
before it is written to disk. Stackable file systems be-
have like normal file systems from the perspective of the
VFS; from the perspective of the underlying file system
they behave like the VFS.

Ext2

AVfs

NCryptfs

ncryptfs_rename()

ext2_rename()

User Process

Virtual File System (VFS)

rename()

vfs_rename()

U
se

r

avfs_rename() K
er

ne
l

Figure 1: Linear file systems stacking: files are transparently
checked for viruses by AVfs and encrypted by NCryptfs before
being written to the disk through Ext2.

FiST is a toolkit for building stackable file sys-
tems [34]. Recently it has been extended to support fan-
out file systems on Linux [30]. Fan-out stackable file
systems differ from linear stackable file systems in that
they call multiple underlying file systems, or branches.
Figure 2 shows a RAIF file system mounted over several
different types of file systems.

2.2 RAIF levels

RAIF duplicates the directory structure on all of the
lower branches. The data files are stored using different
RAIF methods that we call levels, analogous to standard
RAID levels. RAIF0 stripes a file over the lower file
systems. The striping unit may be different for different
files. This level distributes the accesses to the file among
several lower branches. We define RAIF1 slightly dif-
ferently from the original RAID level 1 [19]. The origi-
nal RAID level 1 definition corresponds to RAIF01 de-
scribed below; RAIF1, on the other hand, duplicates
the files on all of the branches. In RAIF4, parities
are calculated for every stripe and stored on a dedi-
cated branch. This level is useful if the parity branch is
much faster than the others. RAIF5 is similar to RAIF4,
but the parity branch changes for different stripes as
shown in Figure 3. In RAIF6, extra parity branches
are used to recover from two or more simultaneous fail-
ures. Some of these levels can be combined together.
For example, RAIF01 is a combination of the RAIF1

2



Ext2 Ext2

RAIF

gzipfs_rename()

NCryptfs

RAMFS

ramfs_rename()

gzipfs

AVfs

NFS

Virtual File System (VFS)

User Process
rename()

vfs_rename()

raif_rename()

avfs_rename() K
er

ne
l

U
se

r
Figure 2: A possible combination of RAIF fan-out stacking
and other file systems stacked linearly: files are checked for
viruses by AVfs before they are stored by RAIF; data is en-
crypted by NCryptfs before being sent to an untrusted NFS
server; and gzipfs compresses files to save space on an in-
memory file system.

parity
parity

1

meta meta

0 2
6

3
54

Branch 0 Branch 1 Branch 2 Branch 3

Figure 3: RAIF5 file layout on a RAIF mounted over four
branches. The file size is 7 pages. Each RAIF striping unit
consists of 2 pages. The starting branch is number 2. The
authoritative branch is the 1st. The meta-data copy is stored
in the 2nd branch. The meta-data size is equal to one disk
block (512 bytes) which is usually smaller than the stripe size.

and RAIF0 arrays in such a way that a RAIF0 array is
mirrored. (RAIF01 corresponds to the historical defini-
tion of RAID level 1 [19].)

2.3 RAIF meta-data
Small files may occupy only a portion of a single stripe.
To distribute the space utilization and accesses among
the branches, we start the stripes of different files on
different branches. We call the branch where the file’s
first data page is located the starting branch. The meta
information about every file includes the file’s starting
branch, RAIF level, and striping unit. To delay LOOKUP
operations on all except one branch, file size and file at-
tributes are stored together with the RAIF per-file meta-
data. The RAIF per-file meta information is stored in
the file’s authoritative branch. The only information
available about the file for a file LOOKUP operation is

the file name. Therefore, it is natural to calculate the
authoritative branch number based on a hash of the file
name. Because the RAIF meta information is essential
to reading and writing the file, the meta-data is repli-
cated according to the RAIF level. Thus, RAIF meta
information is stored only on the authoritative branch
for RAIF0, on all the branches for RAIF1, and on au-
thoritative and parity branches for RAIF levels 4, 5,
and 6. Note that the authoritative branch number may
change after a RENAME operation. Therefore, the cor-
responding meta information has to be moved appropri-
ately. For example, if hash(old file name) = 1 and
hash(new file name) = 3 then for a file stored using
the RAIF level 4 the meta-data has to be moved from
branches 0 and 1 to branches 2 and 3, respectively. Note
that the meta-data still contains information that 1 is the
starting branch for this file. Therefore, the file can be
correctly composed from the stripe even after it is re-
named.

The problem of storing extra meta information on a
per-file basis is well known. However, no universal so-
lution is available up to date. Thus, Extended Attributes
(EA) associate arbitrary data with files in a file system.
Unfortunately, the working group to define an EA API
within the POSIX family of standards was unable to
reach a common decision and the entire effort was aban-
doned in 1998. Some of the file systems that support
EAs are compatible with the latest draft of the specifi-
cation [10], while others are based on older drafts. This
resulted in a number of subtle differences among the dif-
ferent implementations. NTFS’s streams [24] and HFS
Plus’s named forks [1] also associate additional data
with files but their APIs are completely different.

We have implemented two methods to store the extra
per-file meta information. In one method, we maintain
an additional file with meta information for each data
file. However, we found that this method has a num-
ber of deficiencies arising from complicated meta file-
related pointers management that results in non-trivial
execution paths in the VFS. In addition, it results in a
large number of open and created files. In an alterna-
tive approach, we store the RAIF meta information in
the additional data block at the beginning of the data file
itself in the corresponding branch or branches. Files in
other branches have a one page hole at the beginning. In
both cases, these extra files or data pages are not visible
to the user. Currently, the second method is the default
one. Finally, we also plan to use EAs at least on the file
systems that support them.

2.4 Storage and access latency balancing

RAIF imposes virtually no limitations on the file sys-
tems that form lower branches. Therefore, the proper-
ties of these lower branches may be substantially differ-

3



ent. To optimize the read performance, we integrated a
load-balancing mechanism into the RAIF that leverages
replication to dynamically balance the load. For het-
erogeneous configurations, the expected delay or wait-
ing time is often advocated as an appropriate load met-
ric [26]. RAIF measures the times for all read and write
operations sent to lower level file systems, and uses their
latencies to maintain a per-branch delay estimate. The
delay estimate is calculated by exponentially averaging
the latencies of page and meta-data operations on each
individual branch. A good delay estimate can track last-
ing trends in file system load, without getting swayed by
transient fluctuations. We ensure this by maintaining an
exponentially-decaying average along with a deviation
estimate.

Proportional share load-balancing distributes read re-
quests to the underlying file system branches in inverse
proportion to their current delay estimates. This way,
it seeks to minimize the expected delay, and maximize
the overall throughput. For this, RAIF first converts
delay estimates from each of the underlying branches
into per-branch weights, which are inversely related to
the respective delay estimates. A kernel thread peri-
odically updates a randomized array of branch indexes
where each branch has a representation in proportion
to its weight. As RAIF cycles through the array, each
branch receives its proportional share of operations.

Currently, we assign file storage properties at the file’s
creation time based on the file’s type. Next, we plan to
implement automatic RAIF level migration to dynami-
cally balance the storage utilization and data access la-
tency and bandwidth. For example, a file replicated
among the memory file system and a network file sys-
tem may be removed from memory if it is rarely used
and there is no space left on the memory file system.

2.5 Data recovery
Currently, we have a user level fsck program that recov-
ers the information offline in case of a branch failure.
The program accesses the data on lower branches di-
rectly and generates the data on the replaced branch. In
the future, we will implement a kernel recovery thread
that will automatically start to regenerate the data on a
hot-swap branch. It will recover the missing parts of
the files and checkpoint the progress so that the recovery
process does not have to be restarted if interrupted.

3 Implementation and current status
The current RAIF prototype consists of 7,273 lines of
C code. Out of these, only 1,649 are RAIF specific
and 5,624 lines are common for fan-out stackable file
systems. The RAIF structure is modular so that new
RAIF levels, parity and load balancing algorithms can
be added without any changes to the main code. Cur-

rently RAIF supports levels 0, 1, 4, 5, and a stub module
for level 6.

RAIF has high performance and scalability demands.
Therefore, we had to change the stackable file system
templates accordingly. Traditionally, stackable file sys-
tems buffer the data twice. This allows us to keep both
modified (e.g., encrypted or compressed) and unmodi-
fied data in memory at the same time and thus save con-
siderable amounts of CPU time. However, RAIF does
not modify the data pages. Therefore, double caching
does not provide any benefits but makes the page cache
size effectively half its original size. Unfortunately, the
VFS architecture imposes constraints that make sharing
data pages between lower and upper layers complicated.
In particular, the data page is a VFS object that belongs
to a particular inode and uses the information of that in-
ode at the same time. We are still working on this prob-
lem. So far we have found a relatively simple but not
a straightforward solution to the problem. We use data
pages associated with the upper inode for both the lower
and upper file system layers. Specifically, the data pages
belong to the upper inode but are assigned to lower-level
inodes for the short duration of the lower-level page-
based operations. Here is an example of the modified
VFS readpage operation:

page->mapping = lower_inode->i_mapping;
err = lower_inode->i_mapping->a_ops->

readpage(lower_file, page);
page->mapping = upper_inode->i_mapping;

We analyzed the Linux kernel functions that directly
or indirectly use inode and cache page connectivity and
found that in all these cases, the above modification
works correctly. We tested the resulting stackable file
system on a single-CPU and multi-CPU machines under
the compile and I/O-intensive workloads. No races or
other problems were observed.

Another problem specific for fan-out stackable file
systems is the sequential execution of VFS requests. It
dramatically increases latency of VFS operations that
require synchronous accesses to several branches. For
example, RAIF5 synchronously reads data and parity
pages before a small write operation can be initiated.
This problem is related to the previous one because
sometimes, the data pages should be shared not only
between lower and upper file systems but also between
several lower file systems and an upper one. We are cur-
rently working on this problem. However, it is important
to understand that it only increases the latency of certain
file system operations while this has little impact on the
aggregate RAIF performance under a workload gener-
ated by many concurrent processes.

Our current development efforts are concentrated on
the performance enhancements of the general fan-out

4



templates. In addition to the two problems of double
buffering and sequential VFS operations execution de-
scribed above, we are also working on the overall reduc-
tion of CPU overheads to increase the system scalabil-
ity. We are exploring the effects of delaying some VFS
operations on non-authoritative branches. In the future,
we plan to add support for EAs, dynamic adjustment of
RAIF levels and other storage policies, and provide ad-
vanced data recovery procedures in the kernel.

4 Preliminary Evaluation

We have evaluated RAIF performance during different
stages of the development process, to identify possible
problems early and update the design as needed. In this
section we describe the performance of the current RAIF
prototype with data stored using levels 0 and 1.

We conducted our benchmarks on two 1.7GHz Pen-
tium 4 machines with 1GB of RAM. The first ma-
chine was equipped with four Maxtor Atlas 15,000 RPM
18.4GB Ultra320 SCSI disks formatted with Ext2. The
second machine was used as an NFS server. It had
two 10GB Seagate U5 IDE drives formatted with Ext2.
Both machines were running Red Hat 9 with a vanilla
2.4.24 Linux kernel and were connected via a dedicated
100Mbps link. We remounted the lower file systems be-
fore every benchmark run to purge the page cache. We
ran each test at least ten times and used the Student-t
distribution to compute 95% confidence intervals for the
mean elapsed, system, user, and wait times. Wait time is
the elapsed time less CPU time used and consists mostly
of I/O, but process scheduling can also affect it. In each
case the half-widths of the confidence intervals were less
than 5% of the mean. We ran the following two bench-
marks:
• Postmark [12] simulates the operation of electronic

mail servers. It performs a series of file appends,
reads, creations, and deletions. We configured
Postmark to create 20,000 files, between 512–10K
bytes, and perform 200,000 transactions. Cre-
ate/delete and read/write operations were selected
with equal probability.

• RANDOM-READ is a benchmark designed to evalu-
ate RAIF under a heavy load of random data read
operations. It spawns 32 child processes and con-
currently reads 32,000 randomly-located 512 byte
blocks from 16GB files. The load of the different
lower branches fluctuates because of the random-
ness of the read pattern. In particular, a branch may
be idle for some time, if all the reading processes
have sent their requests to the other branches. Our
experiments showed that 32 processes are sufficient
to make these random fluctuations negligible.

We call a test configuration RAIF-N BR, where N is

the number of branches. We call RAIFL a RAIF file
system where all files are stored using RAIF level L.

 0

 20

 40

 60

 80

 100

RAIF-4BRRAIF-3BRRAIF-2BRRAIF-1BRExt2

E
la

ps
ed

 ti
m

e 
(s

ec
)

96s 95s

53s

40s
33s

Wait
User

System

Figure 4: RANDOM-READ benchmark results for plain Ext2
and RAIF0 mounted over 1, 2, 3, and 4 branches.

 0

 50

 100

 150

 200

 250

 300

 350

EXT2NFS-RREXT2NFSNFSEXT2EXT2Ext2

E
la

ps
ed

 ti
m

e 
(s

ec
)

96s

60s

326s

105s

177s

Wait
User

System

Figure 5: RANDOM-READ results for RAIF1 mounted over
NFS and Ext2. RAIF1 performance is compared to plain Ext2,
plain NFS, and RAIF1 with a round-robin balancing policy
(EXT2NFS-RR) configuration.

 0

 20

 40

 60

 80

 100

 120

RAIF-4BRRAIF-3BRRAIF-2BRRAIF-1BRExt2

E
la

ps
ed

 ti
m

e 
(s

ec
)

109s

120s

105s
99s 100s

Wait
User

System

Figure 6: Postmark benchmark results for a plain Ext2 file
system and RAIF0 mounted over 1, 2, 3, and 4 branches.

Figure 4 shows the benchmark results for plain Ext2
and RAIF0 mounted over 1, 2, 3, and 4 lower Ext2 file
system branches. The I/O time accounts for more than
99.9% of the execution time. The execution times of
Ext2 and RAIF-1BR are statistically indistinguishable.
Since the total amount of data fetched from the disks is
only 16MB, the SCSI and PCI buses were idle most of
the time. The I/O time is mostly defined by the time of
the disk seek operations. Therefore, the elapsed bench-
mark execution time decreases well with the increase of
the number of branches. Compared to Ext2, the bench-
mark executes 1.8 times faster with RAIF-2BR, 2.4 times

5



faster with RAIF-3BR, and 3.0 times faster with RAIF-
4BR.

In the case of RAIF1, the RANDOM-READ bench-
mark shows the effectiveness of proportional-share load-
balancing in distributing read loads between identical
replicas. The results can be seen in Figure 5. The
EXT2EXT2 configuration, which has RAIF1 mounted
over two EXT2 file systems, distributes read loads be-
tween two EXT2 branches and is 38% faster than Ext2.
The EXT2NFS configuration has RAIF1 mounted over
an EXT2 branch and an NFS branch, and is a case of
RAIF1 over disparate file systems. Proportional share
load-balancing beats naive round-robin in this case.

Postmark is the second I/O-intensive benchmark we
ran. We ran it with a striping unit size of 8KB that is
smaller than the optimal value but is about the average
file size used during the test. This makes about half of
the files span across multiple branches. Figure 6 shows
the result for RAIF0. The I/O time decreases slightly
slower than in the random-read case because operations
such as LOOKUP, READDIR, OPEN, CLOSE etc. are per-
formed sequentialy on all the branches. Compared to
Ext2, the I/O time of RAIF0-2BR is 1.5 times less, 2.0
times less for RAIF0-3BR, and 2.3 times less for RAIF0-
4BR. There is a 62% system time overhead of RAIF0-
1BR for this workload. There is an additional over-
head of 24% for any additional lower branch. Since the
I/O time improves sublinearly and system time overhead
grows linearly as a function of the number of branches,
there is a branch number where these two effects com-
pensate for each other. Under the Postmark workload,
RAIF0-4BR starts to behave slower than the RAIF0-3BR.
Compared to Ext2, RAIF0-2BR performs 3.7% faster,
RAIF0-3BR performs 9.0% faster, and RAIF0-4BR per-
forms 7.8% faster.

So far we demonstrated that our current RAIF pro-
totype has modest system time overheads. It improves
elapsed time considerably for I/O-intensive workloads
by balancing and distributing the load of lower branches.
However, further system time optimizations are needed
to improve scalability and decrease latency of individual
file system operations.

5 Related Work
Data grids have high availability and efficiency require-
ments [32]. The choice of data placement and man-
agement schemes plays a crucial role in realizing these
goals [14, 28].

Data replication is a commonly-used strategy. It im-
proves data survivability and response time, provides
load balancing, and offers better bandwidth utiliza-
tion [4, 22]. Replication in RAIF uses proportional-
share load balancing using the expected delay as the load
metric. This approach is generally advocated for het-

erogeneous systems [26]. However, when the workload
includes a mix of random and sequential operations, the
number of I/O operations performed may be a more suit-
able load metric [16].

Grids also implement several other storage mech-
anisms, like striping, streaming, and on-demand
caching [18], to efficiently serve a wide range of ac-
cess patterns. Media distribution servers use data
striping and replication to distribute the load among
servers [5, 25]. The stripe unit size and degree of striping
have been shown to influence the performance of these
servers [27]. RAIF effectively mixes striping with other
data placement techniques on a need basis.

Data Grids typically comprise of highly heteroge-
neous storage and network resources. Fault-tolerance
and dynamic re-configuration are key to a successful op-
eration in such scenarios [15]. RAIF realizes these goals
by bringing the rich set of RAID configurations to the
file system level through our stackable fan-out file sys-
tem infrastructure. Fan-out file systems themselves were
proposed before [8, 23]. However, so far the most com-
mon application of fan-out has been unioning [3, 9, 13,
21, 30].

Stackable file systems can be mounted on top of each
other. Existing encryption [31], data integrity verifica-
tion [11], antivirus [17], compression [33], and a trac-
ing [2] stackable file systems can be mounted on top or
below RAIF.

The idea of using different RAID [19] levels for dif-
ferent data access patterns was used in several projects
at the driver [6] and hardware levels [29]. However, the
lack of higher-level information forced the developers to
make the decisions based solely on statistical informa-
tion.

Zebra is a distributed file system that uses standard
network protocols for communications between its com-
ponents [7]. Zebra uses per-file RAID levels and strip-
ing with parity. In contrast, RAIF’s stacking architecture
allows it to utilize the functionality of existing file sys-
tems and to create a variety of configurations without
any modifications to the source code.

6 Conclusions
Our RAIF architecture holds much promise. Its high
flexibility, portability, and simplicity make it a general
solution to many existing file system architecture prob-
lems. RAIF can provide improved data survivability,
data management, and can be easily and efficiently in-
tegrated with existing and future security tools. We have
designed it to be extensible with plugin formulas and pa-
rameters that determine the RAIF personality.

We are currently implementing several RAIF6 multi-
failure recovery methods. We are designing an auto-
matic per-file RAIF levels assignment and RAIF level

6



dynamic migration. For this purpose, we plan to use
statistical information about file accesses and informa-
tion about the current storage state. We are developing a
more reliable in-kernel data recovery mechanism. We
are working on the general performance and scalabil-
ity improvements of the stackable fan-out infrastructure.
We are exploring a number of techniques to improve
RAIF’s efficiency, including delayed writes, simultane-
ous writes to all branches, zero-copying, and advanced
page caching.

Acknowledgments

We thank the committee for its comments. We would
also like to thank all the developers of the basic stack-
able fan-out file system template: Jay Pradip Dave,
Puja Gupta, Harikesavan Pathangi Krishnan, Gopalan
Sivathanu, Charles P. Wright, and Mohammad Nayyer
Zubair.

This work was partially made possible by NSF CA-
REER EIA-0133589 and CCR-0310493 awards and
HP/Intel gifts numbers 87128 and 88415.1.

References
[1] Apple Computer, Inc. HFS Plus Volume

Format. Technical Report Note TN1150,
March 2004. http://developer.apple.com/
technotes/tn/tn1150.html.

[2] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A
File System to Trace Them All. In Proceedings of
the Third USENIX Conference on File and Storage
Technologies (FAST 2004), pages 129–143, San
Francisco, CA, March/April 2004.

[3] AT&T Bell Laboratories. Plan 9 – Programmer’s
Manual, March 1995.

[4] William H. Bell, David G. Cameron, Ruben
Carvajal-Schiaffino, A. Paul Millar, Kurt
Stockinger, and Floriano Zini. Evaluation of
an economy-based file replication strategy for a
data grid. In Proceedings of the 3rd International
Symposium on Cluster Computing and the Grid,
pages 661–668. IEEE Computer Society, 2003.

[5] C. Chou, L. Golubchik, and J. C. S. Lui. Strip-
ing doesn’t scale: How to achieve scalability for
continuous media servers with replication. In In-
ternational Conference on Distributed Computing
Systems, pages 64–71, 2000.

[6] K. Gopinath, N. Muppalaneni, N. Suresh Kumar,
and P. Risbood. A 3-tier RAID storage system
with RAID1, RAID5, and compressed RAID5 for
Linux. In Proceedings of the FREENIX Track at
the 2000 USENIX Annual Technical Conference,

pages 21–34, San Diego, CA, June 2000. USENIX
Association.

[7] J. Hartman and J. Ousterhout. The Zebra Striped
Network File System. In Proceedings of the
14th Symposium on Operating Systems Princi-
ples, pages 29–43, Asheville, NC, December 1993.
ACM.

[8] J. S. Heidemann and G. J. Popek. File system de-
velopment with stackable layers. ACM Transac-
tions on Computer Systems, 12(1):58–89, February
1994.

[9] D. Hendricks. A Filesystem For Software Devel-
opment. In Proceedings of the USENIX Summer
Conference, pages 333–340, Anaheim, CA, June
1990.

[10] IEEE/ANSI. Information Technology–Portable
Operating System Interface (POSIX)–Part 1:
System Application Program Interface (API)—
Amendment: Protection, Audit, and Control In-
terfaces [C Language]. Technical Report STD-
1003.1e draft standard 17, ISO/IEC, October 1997.
Draft was withdrawn in 1997.

[11] A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok.
I3FS: An In-Kernel Integrity Checker and Intru-
sion Detection File System. In Proceedings of the
18th USENIX Large Installation System Adminis-
tration Conference (LISA 2004), pages 69–79, At-
lanta, GA, November 2004.

[12] J. Katcher. PostMark: A New Filesystem Bench-
mark. Technical Report TR3022, Network Appli-
ance, 1997. www.netapp.com/tech_library/
3022.html.

[13] D. G. Korn and E. Krell. A New Dimension for the
Unix File System. Software-Practice and Experi-
ence, pages 19–34, June 1990.

[14] T. Kosar and M. Livny. Stork: making data place-
ment a first class citizen in the grid. In Interna-
tional Conference on Distributed Computing Sys-
tems, March 2004.

[15] Erwin Laure. The Architecture of the Eu-
ropean DataGrid. Technical report, The Eu-
ropean DataGrid Project Team, March 2003.
www.twgrid.org/event/isgc2003/ISGC_

pdf/The_Architecture_of_EDG.pdf.
[16] Ixora Pty Ltd. www.ixora.com.au/tips/

tuning/disk_load.htm. Technical report.
[17] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok.

Avfs: An On-Access Anti-Virus File System. In
Proceedings of the 13th USENIX Security Sym-
posium (Security 2004), pages 73–88, San Diego,
CA, August 2004.

7



[18] R. W. Moore, I. Terekhov, A. Chervenak,
S. Studham, C. Watson, and H. Stockinger.
Data Grid Implementations. Technical re-
port, Global Grid Forum, January 2002.
www.ppdg.net/docs/WhitePapers/

Capabilities-grids.v6.pdf.
[19] D. Patterson, G. Gibson, and R. Katz. A case

for redundant arrays of inexpensive disks (RAID).
In Proceedings of the ACM SIGMOD, pages 109–
116, June 1988.

[20] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS version 3 design
and implementation. In Proceedings of the Sum-
mer USENIX Technical Conference, pages 137–52,
Boston, MA, June 1994.

[21] J. S. Pendry and M. K. McKusick. Union mounts in
4.4BSD-Lite. In Proceedings of the USENIX Tech-
nical Conference on UNIX and Advanced Comput-
ing Systems, pages 25–33, December 1995.

[22] K. Ranganathan and I. Foster. Identifying Dy-
namic Replication Strategies for a High Perfor-
mance Data Grid. In Proceedings of the Inter-
national Grid Computing Workshop, November
2001.

[23] D. S. H. Rosenthal. Evolving the Vnode interface.
In Proceedings of the Summer USENIX Technical
Conference, pages 107–18, Summer 1990.

[24] M. Russinovich. Inside Win2K NTFS, Part 1.
www.winnetmag.com/Articles/ArticleID/

15719/pg/2/2.html, November 2000.
[25] M. Stumm S. Anastasiadis, K. Sevcik. Maximiz-

ing throughput in replicated disk striping of vari-
able bit-rate streams. In Proceedings of the An-
nual USENIX Technical Conference, pages 191–
204, Monterey, CA, June 2002.

[26] B. Schnor, S. Petri, R. Oleyniczak, and H. Langen-
dorfer. Scheduling of parallel applications on het-
erogeneous workstation clusters. In Proceedings
of PDCS’96, the ISCA 9th International Confer-
ence on Parallel and Distributed Computing Sys-
tems, pages 330–337, Dijon, France, 1996.

[27] P. Shenoy and H. M. Vin. Efficient striping
techniques for variable bit rate continuous media
file servers. Technical Report UM-CS-1998-053,
1998.

[28] A. Shoshani, A. Sim, and J. Gu. Storage Resource
Managers: middleware components for grid stor-
age. In Proceedings of the Nineteenth IEEE Sym-
posium on Mass Storage Systems, April 2002.

[29] J. Wilkes, R. Golding, C. Staelin, and T. Sulli-
van. The HP AutoRAID Hierarchical Storage Sys-

tem. ACM Transactions on Computer Systems,
14(1):108–136, February 1996.

[30] C. P. Wright, J. Dave, P. Gupta, H. Krishnan,
E. Zadok, and M. N. Zubair. Versatility and
Unix Semantics in a Fan-Out Unification File Sys-
tem. Technical Report FSL-04-01b, Computer
Science Department, Stony Brook University, Oc-
tober 2004. www.fsl.cs.sunysb.edu/docs/

unionfs-tr/unionfs.pdf.
[31] C. P. Wright, M. Martino, and E. Zadok. NCryptfs:

A Secure and Convenient Cryptographic File Sys-
tem. In Proceedings of the Annual USENIX Techni-
cal Conference, pages 197–210, San Antonio, TX,
June 2003.

[32] William Yurcik, Xin Meng, Gregory A. Koenig,
and Joseph Greenseid. Cluster Security as a
Unique Problem with Emergent Properties: Issues
and Techniques. In 5th LCI International Confer-
ence on Linux Clusters, May 2004.

[33] E. Zadok, J. M. Anderson, I. Bădulescu, and
J. Nieh. Fast Indexing: Support for size-changing
algorithms in stackable file systems. In Proceed-
ings of the Annual USENIX Technical Conference,
pages 289–304, Boston, MA, June 2001.

[34] E. Zadok and J. Nieh. FiST: A Language for Stack-
able File Systems. In Proceedings of the Annual
USENIX Technical Conference, pages 55–70, San
Diego, CA, June 2000.

8


