
Round-Trip Privacy with NFSv4∗

Avishay Traeger, Kumar Thangavelu, and Erez Zadok
Stony Brook University Computer Science Department

Stony Brook, NY 11794-4400
{atraeger,kvthanga,ezk}@cs.sunysb.edu

Appears in the proceedings of the Third ACM Workshop on Storage Security and Survivability (StorageSS 2007)

ABSTRACT
With the advent of NFS version 4, NFS security is more important
than ever. This is because a main goal of the NFSv4 protocol issuit-
ability for use on the Internet, whereas previous versions were used
mainly on private networks. To address these security concerns,
the NFSv4 protocol utilizes the RPCSECGSS protocol and allows
clients and servers to negotiate security at mount-time. However,
this provides privacy only while data is traveling over the wire.

We believe that file servers accessible over the Internet should
contain only encrypted data. We present a round-trip privacy scheme
for NFSv4, where clients encrypt file data for write requests, and
decrypt the data for read requests. The data stored by the server on
behalf of the clients is encrypted. This helps ensure privacy if the
server or storage is stolen or compromised. As the NFSv4 protocol
was designed with extensibility, it is the ideal place to addround-
trip privacy. In addition to providing a higher level of security than
only over-the-wire encryption, our technique is more efficient, as
the server is relieved from performing encryption and decryption.
We developed a prototype of our round-trip privacy scheme. In our
performance evaluation, we saw throughput increases of up to 24%,
as well as good scalability.

Categories and Subject Descriptors
D.4.6.a [Operating Systems]: Security and Privacy Protection—
Cryptographic controls

General Terms
Security, Performance

Keywords
Encryption, NFSv4, Round-trip

∗This work was partially made possible by the NSF HECURA
CCF-0621463 award and an IBM Faculty Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’07,October 29, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-891-6/07/0010 ...$5.00.

1. INTRODUCTION
The first two stated goals of NFS version 4 are “improved access

and good performance on the Internet” and “strong security with
negotiation built into the protocol” [19]. Whereas previous versions
of NFS were designed for private networks, NFSv4 was designed
to be used over the Internet. NFS systems will clearly be harder
to secure in this environment, as reflected by the NFSv4 goal of
having strong built-in security.

The NFSv4 protocol provides this strong security by utilizing the
RPCSECGSS protocol [6]. RPCSECGSS provides authentica-
tion, integrity, and privacy. Although RPCSECGSS secures com-
munications between clients and servers, file data resides as clear-
text in the server’s caches and storage. This leaves data vulnerable,
especially for NFSv4 servers that are open to connections from the
Internet. Additionally, if servers see only cipher-text, companies
could offer storage outsourcing services using NFSv4. These ser-
vices are attractive as they reduce data management costs for users.

The standard RPCSECGSSprivacy service provides authenti-
cation, integrity, and privacy on the wire. We developed ourround-
trip privacy scheme as a new RPCSECGSS service calledrt-privacy.
With rt-privacy, clients encrypt file data onwrite operations, and
decrypt it onread operations. Other parts of the RPC are en-

Internet

Server

service
(b) RPCSEC_GSS rt−privacy

Server

(a) RPCSEC_GSS privacy
service

Internet

Client

write read

Client

readwrite

RPCSEC_GSS RPCSEC_GSS

NFSv4 Client NFSv4 Client

RPCSEC_GSSRPCSEC_GSS

NFSv4 Server NFSv4 Server

ext3 ext3

Figure 1: A comparison of the current RPCSECGSS privacy
service and our round-trip privacy (rt-privacy) service. The ar-
rows depict data transfers, where the white portions represent
clear-text file data and the black portions represent cipher-text.

1

crypted over the wire as they are in theprivacyservice. Addition-
ally thert-privacy service provides the same authentication and in-
tegrity on the wire asprivacy. In our scheme, clear-text file data
resides only on authenticated clients. This is depicted in Figure 1.

NFSv4 was designed with extensibility in mind. This allowedus
to integrate stronger privacy without modifying the protocol. Be-
cause NFSv4 utilizes RPCSECGSS, which is also an extensible
protocol, we were able to cleanly introduce a new privacy service
that is negotiated at mount-time. Additionally, the extensibility of
RPCSECGSS meant that we could leverage a secure and estab-
lished protocol, rather than create a new one.

A trade-off often exists between security and performance.The
rt-privacyservice not only provides better privacy, but also relieves
the server from performing encryption and decryption on filedata.
This is an important savings, as the server is generally the bot-
tleneck in client-server environments. Our performance evalua-
tion shows that althoughrt-privacy has degraded throughput when
performing sequential reads with read-ahead, all other workloads
tested show an improvement—as much as 24%. Additionally, we
benchmarkedrt-privacywith as many as 96 processes, and saw that
it scales well.

The rest of this paper is organized as follows. We discuss related
work in Section 4. We describe the design and implementationof
our new privacy service in Section 2, and evaluate its performance
in Section 3. We conclude in Section 5.

2. DESIGN AND IMPLEMENTATION
We designed our round-trip privacy scheme with two main goals

in mind:

1. Privacy: only authenticated clients should have access to
clear-text data.

2. Efficiency: the server should be freed from encrypting and
decrypting data.

We present our threat model in Section 2.1. We discuss the de-
sign of our round-trip privacy service in Section 2.2. We describe
the methods that we used for encrypting and decrypting file data in
Section 2.3, and our key-management scheme in Section 2.4.

2.1 Threat Model
We assume that only authenticated clients are trusted, and that

the network, unauthenticated clients, as well as the NFSv4 server
are untrusted. Our goal is to ensure privacy while data is being
transmitted over the network and while it resides on the server (both
in memory and on persistent storage). We do not currently prevent
attackers from maliciously modifying or deleting data. However,
we plan to provide round-trip integrity in the future to detect file
modifications.

2.2 Round-Trip Privacy
There are several possible ways to design round-trip privacy for

NFSv4. We discuss three alternatives before describing ours to il-
lustrate the benefits of our choice. One possibility is to encrypt
all wire traffic (using RPCSECGSS or SSH, for example) and
separately encrypt data being written to the server’s disks. This
scheme has three drawbacks. First, data is present unencrypted in
the server’s memory, allowing an attacker to potentially view it.
Second, keys are managed on the server, which is untrusted. Third,
the same data is encrypted and decrypted multiple times in a single
operation. In awrite request, for example, the client encrypts
the data, the server decrypts the data, and then re-encryptsit before
saving it to disk. Similar behavior is seen inread requests. This

is especially bad since the server, which is usually the performance
bottleneck in a network file system, is doing unnecessary work.

Another possibility would be to encrypt the file data at the client,
above the NFS layer, perhaps by using a stackable file system such
as NCryptfs [21] or eCryptfs [9]. Stackable file systems are ause-
ful technique for adding functionality to existing file systems [23].
Stackable file systems overlay anotherlowerfile system (the NFSv4
client in this case), and intercept file system events and data bound
from user processes to the lower file system. In the case of encryp-
tion stackable file systems, file data is encrypted onwrite oper-
ations before passing it to the lower file system, and is decrypted
onread operations after it is received from the lower file system.
However, this scheme does not provide authentication and integrity,
and provides privacy only for file data (not for NFS commands and
arguments). If one were to use RPCSECGSS to provide this, then
clients would be encrypting file data twice forwrite requests, and
servers would be decrypting once. Servers encrypt file data once,
and clients decrypt twice forread requests. This puts less load on
the server than the previous scheme, but unnecessary work isstill
being performed.

One additional method for implementing round-trip privacywould
be to add a new RPCSECGSS privacy service type that would not
encrypt or decrypt file data. A user could then mount an encryp-
tion stackable file system on top of the NFS client to handle the
encryption and decryption of file data. The benefit of using this
design is that it relies on stackable file systems that are already in
use, and does not perform unnecessary encryption or decryption
operations. One downside is that it would be difficult to coordi-
nate the privacy settings between the stackable file system and the
RPC layer. The system would need to be carefully configured to
ensure that anything not being encrypted at the RPC layer wasbe-
ing encrypted by the stackable file system. Additionally, itwould
be difficult to implement a feature where the user could selectively
encrypt files on storage because information about which files are
encrypted would need to traverse several programming layers. An-
other concern with this design is that performance may suffer be-
cause of adding an additional file system layer, and is exacerbated
by the fact that the stackable file system performs its own caching.
Since both the stackable file system and the NFS client will have
their own caches, the cache size is effectively halved, which can
impact performance.

We chose to implement our round-trip privacy scheme by adding
a new service type to RPCSECGSS. The NFSv4 protocol utilizes
the RPCSECGSS protocol [6] to provide authentication, integrity,
and privacy. RPCSECGSS uses the GSS-API (Generic Security
Service API), and consists of security context creation, RPC data
exchange, and security context destruction. During security context
creation, a client may specify the security mechanism, the Quality
of Protection (cryptographic algorithm to be used), and thetype of
service. The current security mechanisms implemented by Linux
are Kerberos and SPKM-3. The type of service is one ofprivacy,
integrity, or none. All types of service perform authentication, and
privacy includes integrity as well. Once a context is set up success-
fully, the RPC data exchange phase may begin. When the clienthas
finished the data exchange, it informs the server that it no longer re-
quires the security context, and the context is then destroyed.

We have added a new service type calledrt-privacy (round-trip
privacy) to the existing RPCSECGSS service types. For opera-
tions other thanread andwrite, rt-privacy is identical topri-
vacy, providing authentication, integrity, and privacy over the wire.
For write operations, the file data is encrypted using strong en-
cryption since it will be stored persistently, whereas the remainder
of the RPC (such as NFS commands and arguments) is encrypted

2

as inprivacy. The file data encryption is discussed further in Sec-
tion 2.3. The server decrypts everything but the file data; this allows
the server to access the meta-data that it needs to process the RPC,
but leaves the data to be written to storage encrypted. Forread
operations, the server does not encrypt the file data, but does en-
crypt the remainder of the RPC. Using thert-privacy service, the
server performs no file data encryption or decryption, reducing its
load, while providing round-trip privacy.

In addition to avoiding unnecessary encryption and decryption,
we chose to implement our scheme as an RPCSECGSS service
because: (1) it allows us to encrypt all NFS-related traffic (this
cannot be done at the file system level, for example), (2) it allows
us to easily distinguish file data from the rest of an RPC so that
it can be handled separately (this is more difficult at the transport
level, for example), (3) it allows us to implement round-trip privacy
by adding a service to RPCSECGSS, which is well-known and
tested security protocol, and (4) the extensibility of RPCSEC GSS
allowed us to cleanly add this new service and have it be negotiated
at mount time.

We have implemented our RPCSECGSS service type only for
the Kerberos security mechanism, but adding it to the SPKM-3
mechanism would not be difficult. In addition to our changes to
RPCSECGSS, we modified the NFSv4 implementation to sup-
port our key management (see Section 2.4). Because NFSv2 and
NFSv3 can also use RPCSECGSS, porting the key management
code would allow them to use rt-privacy as well. In total, we added
1,840 lines of code, and deleted 21 lines. The total development
time was two part-time graduate student working for three months.

2.3 File Data Encryption
By default, we encrypt file data with AES using a 128-bit key,

which is the default for other current file data encryption systems [9]
(privacycurrently uses DES-64). This should be sufficiently strong
for encrypting most persistent data. If stronger privacy guarantees
are needed however, it is trivial to use another supported encryption
algorithm or to change the key size because we utilize the Linux
kernel’s flexible CryptoAPI.

The Linux implementation of NFSv4 performs write operations
at offsets that are not necessarily block-aligned nor multiples of
the block size, which complicates the use of a block cipher. One
possible solution to this issue is to modify NFS’s write behavior to
write whole, aligned blocks. However, writing a partial block when
the remainder of the block is not cached would hurt performance
because the client would have to read a full page from the server,
decrypt it, complete the block using the new data, and then encrypt
and write back the full block. Instead, we use counter-mode (CTR-
mode) encryption [5]. This turns the block cipher into a stream
cipher, which allows for variable-sized writes and random access
during decryption. CTR mode obviates the need to be concerned
with cipher block sizes and padding. We use the encryption block
number for the counter. It has been proven that CTR-mode encryp-
tion is as secure as CBC-mode encryption [13].

2.4 Key Management
We have implemented a simple key-management system that can

be cleanly extended to provide more advanced functionality, such
as per-user and per-group keys. After mounting the NFSv4 file
system, the administrator enters a password on the client using the
ioctl system call. The main encryption key is generated from
the password using the PKCS #5 specification [18]. Neither the
password nor the main encryption key are persistently stored. Keys
are randomly generated for each file, which are encrypted andde-
crypted using the main encryption key. Per-file keys are stored in

the file’s extended attribute on the server. This requires that the
exported file system support extended attributes, but most popular
Linux file systems support this feature. Per-file keys and arecached
in the file’s in-memory inode (a per-file data structure) on the client.
Caching the key allows us to reduce the number of key exchanges
significantly. Although this key-management system is currently
not flexible enough for real-world use, it is sufficient for our proto-
type, and can easily be extended to provide added functionality.

A feature that was introduced in NFSv4 is thecompound proce-
dure, which allows clients to send several operations in one“com-
pound,” reducing the number of RPCs that are transmitted. We
utilize compounds to store and retrieve the per-file keys. The key
is stored on the firstwrite operation to a file, and is retrieved on
read andwrite operations when the key is not in the client’s
cache. The NFSv4 protocol supportsnamed attributes, which are
similar to extended attributes. This allows systems to use attributes
that are not explicitly supported by the protocol without modify-
ing it. We would have utilized this extensibility feature totransmit
the per-file keys, but it is not yet available in the Linux NFSv4 im-
plementation. To overcome this problem, we extended the NFSv4
protocol to add a newrecommended attribute; these attributes are
hard-coded, unlike thenamed attributes. This was the only change
made to the NFSv4 protocol, and is temporary.

3. EVALUATION
The main questions that we wanted to answer when evaluating

the performance of our round-trip privacy scheme were:

1. With rt-privacy, the server is relieved from performing en-
cryption and decryption, but the file data encryption performed
on the client is more costly. How will this affect workloads
where the server is not heavily loaded?

2. How well doesrt-privacy scale?

We evaluated our round-trip privacy service using up to seven
identical machines; one server and up to six clients. Each was a
Dell 1800 with a 2.8GHz Intel Xeon processor, 2MB L2 cache, and
1GB of RAM. The machines were equipped with 250GB Maxtor
7L250S0 SCSI disks. Each machine used one disk as its system
disk, and the server used an additional disk for the benchmark data.
All machines were connected with gigabit Ethernet by a dedicated
HP ProCurve 3400cl switch. The machines ran Fedora Core 6 up-
dated as of May 10, 2007, kernel version 2.6.22-rc3. All local file
systems used ext3 with extended attributes enabled. A list of in-
stalled package versions, the kernel configuration, and themicro-
benchmark source code are available at
www.fsl.cs.sunysb.edu/project− secnetfs.html.

We used the Autopilot v.2.0 [20] benchmarking suite to auto-
mate the benchmarking procedure. We configured Autopilot torun
all tests at least ten times, and compute 95% confidence intervals
for the mean elapsed, system, and user times using the Student-t
distribution. In each case, the half-width of the interval was less
than 5% of the mean. We report the mean of each set of runs.
Throughput is calculated as the amount of data transferred,divided
by the longest elapsed time of all client processes. As we hadonly
six client machines available to us, configurations involving more
than 6 processes used more than one process per machine (evenly
distributed among the clients).

To minimize the influence of consecutive runs on each other, all
file systems, including the exported file system, were re-mounted
between runs. In addition, the exported file system was recreated.
The page, inode, and dentry caches were cleaned between runson
all machines using the Linux kernel’sdrop caches mechanism.

3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16

T
hr

ou
gh

pu
t (

M
B

/s
ec

on
d)

Number of Processes

privacy (seq)
rt-privacy (seq)
privacy (rand)

rt-privacy (rand)

Figure 2: Results for the sequential and random write work-
loads running on one client machine with a varying number of
processes. Note: the x-axis is logarithmic.

3.1 Write Throughput
To measure write throughput, we used sequential and random

write workloads generated by a workload generator that we created.
Each process created a 1GB file on the server by writing 1,024 1MB
chunks. Each file was created in its own directory, andsync was
called at the conclusion of the benchmark.

The results for one client machine are summarized in Figure 2.
As we can see,rt-privacy consistently performs better thanpri-
vacy. To better explain the performance improvement, we profiled
the client’s encryption function and the server’s decryption function
using OSprof [12]. The profiles showed that for the one-process
sequential workload, the client’s encryption function forrt-privacy
is 1.3 times slower because of the stronger encryption. However,
while encryption on the client is marginally slower withrt-privacy,
decryption on the server is 7.1 times faster because file datadoes
not need to be processed. Combined, the total encryption andde-
cryption time for a write request and reply is 1.9 times faster with
rt-privacy.

For sequential writes, the throughput forrt-privacy is approx-
imately 32.0 MB/sec, and the throughput forprivacy is approx-
imately 24.4 MB/sec (approximately a 24% improvement). The
results do not improve with added processes because of coarse-
grained locking in the client code. This was confirmed with OS-
prof. If we run the experiment with two client machines, withone
process on each machine, rather than one client machine withtwo
processes, the throughput forrt-privacy increases to 40.8 MB/sec
and the throughput forprivacy increases to 31.6 MB/sec. This is
because we remove the lock contention from the client by running
the processes on two separate machines.

Random write behavior differs from sequential write in two main
ways. First, the NFS client cannot coalesce as many sequential
write requests when requests are to random locations in the file.
However, the NFSv4 client used the default write size of 128KB,
and the application was writing 1MB chunks. To the NFSv4 client,
each chunk was seen as eight sequential writes, so coalescing re-
quests did not differ between the workloads. The second way in
which the behaviors differ is longer disk seeks on the serverfor
random writes. For bothprivacyandrt-privacy, the random write
results with one process are statistically indistinguishable from the
corresponding sequential write results. However, when thenumber
of processes is increased, the random write performance decreases.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 6 12 24 48 96

T
hr

ou
gh

pu
t (

M
B

/s
ec

on
d)

Number of Processes

privacy (seq)
rt-privacy (seq)
privacy (rand)

rt-privacy (rand)

Figure 3: Results for the sequential and random write work-
loads running on six client machines with a varying number of
processes on each. Note: the x-axis is logarithmic.

This is because each process writes 1GB of data, and the server
machine has 1GB of RAM. As more data is written on the server,
and is written more quickly due to the added number of clients, the
server must flush file data to disk more often. Additionally, if the
number of dirty pages passes a specified threshold, these writes are
performed synchronously. This can be seen in the sharp drop in
throughput for sixteen processes in Figure 2, .

To see how well thert-privacy service scales, we ran the write
workloads using six client machines, with multiple processes on
each (up to 96 processes in total). The results are shown in Fig-
ure 3. As we can see, thert-privacy service has a similar degra-
dation in throughput asprivacy, but maintains a higher throughput.
The decrease in throughput as more processes are added is dueto
the server being more loaded, and requests therefore take longer to
process on average.

3.2 Read Throughput
To measure read throughput, we ran both sequential and random

read workloads using the same configuration as the write bench-
marks. Before starting the benchmarks, we created a 1GB file on
the server in its own directory for each client process. We cleaned
the caches before each run.

As with the write micro-benchmark, we used OSprof to examine
the encryption and decryption overheads when running a sequen-
tial workload with one process. In this case we were interested in
the encryption method on the server and the decryption method on
the client. We found that forrt-privacy, the client-side decryption
function was 1.2 times slower thanprivacy, but its server-side en-
cryption function was 7.4 times faster because it does not encrypt
file data. Combined, thert-privacy functions were 1.5 times faster.

Figure 4 shows the results for several processes running theread
workloads on one client machine. For sequential reads with one
process, the results are statistically indistinguishable. As more are
added, we see thatrt-privacy does not perform as well asprivacy
(the throughput forrt-privacy is as much as 14.7% lower). This
was surprising, as the profiles indicate thatrt-privacy should be
faster. We discovered thatrt-privacy had lower throughput due to
the NFS client performing read-ahead. Although the server-side
encryption function performed better forrt-privacy, much of this
was performed off-line because of read-ahead. The client-side en-
cryption, however, has a greater effect on the elapsed time.

4

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16

T
hr

ou
gh

pu
t (

M
B

/s
ec

on
d)

Number of Processes

privacy (seq)
rt-privacy (seq)
privacy (rand)

rt-privacy (rand)

Figure 4: Results for the sequential and random read work-
loads running on one client machine with a varying number of
processes. Note: the x-axis is logarithmic.

 0

 5

 10

 15

 20

 25

 30

 6 12 24 48 96

T
hr

ou
gh

pu
t (

M
B

/s
ec

on
d)

Number of Processes

privacy (seq)
rt-privacy (seq)
privacy (rand)

rt-privacy (rand)

Figure 5: Results for the sequential and random read work-
loads running on six client machines with a varying number of
processes on each. Note: the x-axis is logarithmic.

By default, the Linux NFSv4 client is configured to perform at
most fifteen read-ahead RPCs. In the source code, the authorsstate
that users working over a slow network may want to reduce the
amount of read-ahead for improved interactive response. This may
be a common scenario with NFSv4 since it was designed to be used
over the Internet. By reducing the maximum number of read-ahead
RPCs to 1, we saw that the throughput forrt-privacy was between
4.2% and 23.0% higher thanprivacy. It should be noted that even in
situations where throughput suffered, the server performed signif-
icantly less work when usingrt-privacy, alleviating load from the
server machine that is generally the bottleneck. When running the
random read workload, the throughput forrt-privacy is as much as
10.4% higher than that ofprivacy. This is because the Linux kernel
reduces read-ahead when it sees that read-ahead is not effective.

We ran the read workloads using six client machines to observe
how wellrt-privacyscales. As we can see from Figure 5,rt-privacy
andprivacy behave almost identically, showing that scalability is
not affected by the stronger security.

4. RELATED WORK
In this section we describe other cryptographic systems forre-

mote storage. We first discuss systems that are based on NFS or
stackable file systems. We then focus on key management, and
approaches used to reduce the load on file servers.

NFS-based systems.
Several file systems have utilized NFS to add privacy to a sys-

tem. Matt Blaze’s CFS [2] is a cryptographic file system that is
implemented as a user-level NFS server. An encrypted directory
is associated with an encryption key and is explicitly attached by
the user by specifying the key. Once attached, CFS creates a direc-
tory in the mount point that acts as an unencrypted window to the
user’s data. A later paper [3] explores key escrow and the useof
smart cards to store user keys. Due to its user-space implementa-
tion, context switches and data copies hinder CFS’s performance.
Additionally, CFS uses a single key to encrypt all files underan
attached directory, which reduces security.

TCFS [4] is a cryptographic file system that is implemented asa
modified kernel-mode NFS client. To encrypt data, a user setsan
encrypted attribute on files and directories within the NFS mount
point. Every user and group is associated with a different encryp-
tion key which is protected using the Unix login password and
stored in a local file. A second scheme also supports Kerberos-
based key management. Group access to encrypted resources is
limited to a subset of the members of a given Unix group, while
allowing for a mechanism for reconstructing a group key whena
member of a group is no longer available. TCFS has several weak-
nesses that make it less than ideal for deployment. First, the re-
liance on login passwords as user keys is not sufficiently secure.
Also, storing encryption keys on disk in a key database further re-
duces security. Finally, TCFS is available only on systems with
Linux kernel 2.2.17 or earlier, limiting its availability.

The Self-certifying File System (SFS) [14] is an encrypt-on-the-
wire system which uses NFS to achieve portability. Users com-
municate with a local SFS client using NFS RPC calls. The client
communicates with a remote SFS server which talks to an NFS
server residing on the same machine. SFS-RO [7] is based on SFS
and supports encryption on the server-side disk. However, its usage
is limited to read-only data; file modification is not supported.

Stackable file systems.
Stackable encryption file systems are portable because theycan

stack on top of any existing file system. These file systems canbe
layered on an NFS client to write encrypted data to a remote disk.
This would encrypt file data, but NFS-related information would
be leaked on the wire because RPC procedure names arguments
would not encrypted. The main disadvantage of stackable filesys-
tems is the performance penalty incurred by the additional level of
indirection introduced and the need to have additional buffer pages
to hold the unencrypted data. Cryptfs [22] is the first file system of
this type, and bases its keys on process session IDs and user IDs.

NCryptfs [21] enhanced Cryptfs to support multiple concurrent
authentication methods, multiple dynamically-loadable ciphers, ad-
hoc groups, challenge-response authentication and timeouts for keys,
active sessions and authorizations. NCryptfs uses a singlekey to
encrypt all the files in a mount point which has to be set when
the file system is mounted. IBM’s eCryptfs [9], another Cryptfs-
derived file system, provides advanced key management and pol-
icy features. eCryptfs stores the encryption key as a part ofthe file
or in an extended attribute, and an attempt to access an encrypted
file will result in a callback to a user space utility which will then
prompt the user for the password.

Key management techniques.
In addition to the key management techniques discussed in the

context of the systems above, other network storage systemsused
various techniques to manage their keys. Both AFS [10] and NASD [8]
use Kerberos to provide security, but both encrypt data onlyon the

5

wire, and not on the storage, which decreases security and perfor-
mance [17]. SNAD [16] expands NASD to provide on disk encryp-
tion. However, the main contribution from SNAD is a PKI-based
key management system. The symmetric key used to encrypt the
file is encrypted with the public keys of the users who are allowed
to access the file. Users can then access the file by decryptingthe
symmetric key using their private keys, and then decryptingthe file.

Microsoft’s Encrypting File System (EFS) [15] is an extension
to NTFS and utilizes Windows authentication methods as wellas
Windows ACLs. EFS stores keys on the disk in a lockbox that is
encrypted using the user’s login password.

Another approach to manage keys is explored by the Secure File
System [11]. It creates an ACL for each file that contains the access
permissions on the file. The file system encrypts the file key using
a trusted group server’s public key and stores it as a part of the file
metadata. The access request is then forwarded to the group server
which enforces the access permissions set in the ACL.

Reducing server load.
Different approaches have been used to reduce the load on the

server. SFS-RO, like rt-privacy, avoids performing any crypto-
graphic operations on the server to give better performance. It
stores data in the encrypted form on untrusted servers that can be
modified only by the owner. AFS [10], a distributed file system,
caches file data in a local disk cache. NASD [8] proposes a dis-
tributed network of storage drives, which relieves the server from
handling data transfers. Authorized users use capabilities attained
from the server to access network-attached disks directly.

5. CONCLUSIONS
We designed a new round-trip privacy scheme for NFSv4 which

was implemented as a new RPCSECGSS service calledrt-privacy.
This allows for stronger privacy, which is especially important when
using NFSv4 over the Internet.

We leveraged the extensibility of the established RPCSECGSS
protocol to seamlessly add our security service. We also utilized the
extensibility of NFSv4 to add our key management system with-
out modifying the protocol. Our privacy service not only provides
increases security, but also reduces the load on the server when
compared to other privacy options. In our experiments we saw
that rt-privacy often significantly improved throughput and scaled
well. We have made the source code forrt-privacy available at
www.fsl.cs.sunysb.edu/project− secnetfs.html.

Future Work.
We plan to implement a more flexible key management scheme,

and allow users to specify which files should be stored in encrypted
form. We also plan to encrypt meta-data, such as file names. Inad-
dition, we can further modify our RPCSECGSS service to allow
for round-trip integrity [1]. We will also look into potential perfor-
mance improvements gained from incorporating compressioninto
rt-privacy. Data can be compressed before being encrypted, and
decompressed after being decrypted. This can potentially improve
performance in systems that have network or disk bottlenecks, as
well as saving disk space on the server.

6. ACKNOWLEDGMENTS
We thank the anonymous reviewers and J. Bruce Fields for their

comments, the Linux NFSv4 developers for their prompt responses
and bug fixes, Radu Sion for his advice in the initial stages ofthe
work, and Justin Seyster for recommending CTR-mode encryption.

7. REFERENCES
[1] A. Aggarwal. Extensions to NFSv4 for checksums. Technical Report

Internet-Draft, Network Working Group, May 2006.
[2] M. Blaze. A cryptographic file system for Unix. InProc. of the first

ACM Conf. on Computer and Communications Security, pp. 9–16,
Fairfax, VA, 1993

[3] M. Blaze. Key management in an encrypting file system. InProc. of
the Summer USENIX Technical Conf., pp. 27–35, Boston, MA, June
1994.

[4] G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano. The design
and implementation of a transparent cryptographic filesystem for
Unix. In Proc. of the Annual USENIX Technical Conf., FREENIX
Track, pp. 245–252, Boston, MA, June 2001.

[5] W. Diffie and M. E. Hellman. Privacy and authentication: An
introduction to cryptography.Proc. of the IEEE, 67(3):397–427,
1979.

[6] M. Eisler, A. Chiu, and L. Ling. RPCSECGSS protocol
specification. Technical Report RFC 2203, Network Working Group,
September 1997.

[7] K. Fu, M. F. Kaashoek, and D. Mazi‘eres. Fast and secure distributed
read-only file system.Computer Systems, 20(1):1–24, 2002.

[8] H. Gobioff. Security for a High Performance Commodity Storage
Subsystem. PhD thesis, Carnegie Mellon University, May 1999.

[9] M. Halcrow. eCryptfs: a stacked cryptographic filesystem. Linux
Journal, (156):54–58, April 2007.

[10] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M J. West. Scale and
performance in a distributed file system.ACM Transactions on
Computer Systems, 6(1):51–81, February 1988.

[11] J. P. Hughes and C. J.Feist. Architecture of the secure file system. In
Proc. of the 18th International IEEE Symposium on Mass Storage
Systems and Technologies, pp. 277–290, San Diego, CA, April 2001

[12] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok.
Operating system profiling via latency analysis. InProc. of the 7th
Symposium on Operating Systems Design and Implementation, pp.
89–102, Seattle, WA, November 2006. ACM SIGOPS.

[13] H. Lipmaa, P. Rogaway, and D. Wagner. CTR-mode encryption. In
In First NIST Workshop on Modes of Operation, Baltimore, MD,
October 2000. NIST.

[14] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. InProc. of the
17th ACM Symposium on Operating Systems Principles, pp.
124–139, Charleston, SC, December 1999

[15] Microsoft Research. Encrypting file system for windows2000.
Technical report, Microsoft Corporation, July 1999.

[16] E. Miller, W. Freeman, D. Long, and B. Reed. Strong security for
network-attached storage. InProc. of the First USENIX Conf. on File
and Storage Technologies, pp. 1–13, Monterey, CA, January 2002.

[17] E. Riedel, M. Kallahalla, and R. Swaminathan. A framework for
evaluating storage system security. InProc. of the First USENIX
Conf. on File and Storage Technologies, pp. 15–30, Monterey, CA,
January 2002.

[18] RSA Laboratories. Password-based cryptography standard.
Technical Report PKCS #5, RSA Data Security, March 1999.

[19] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck. NFS Version 4 Protocol. Technical Report
RFC 3530, Network Working Group, April 2003.

[20] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and E. Zadok.
Auto-pilot: A platform for system software benchmarking. In Proc.
of the Annual USENIX Technical Conf., FREENIX Track, pp.
175–187, Anaheim, CA, April 2005.

[21] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A secure and
convenient cryptographic file system. InProc. of the Annual
USENIX Technical Conf., pp. 197–210, San Antonio, TX, June 2003.

[22] E. Zadok, I. Bădulescu, and A. Shender. Cryptfs: A stackable vnode
level encryption file system. Technical Report CUCS-021-98,
Computer Science Department, Columbia University, June 1998.

[23] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P. Wright. On
incremental file system development.ACM Transactions on Storage
(TOS), 2(2):161–196, May 2006.

6

