Round-Trip Privacy with NFSv4

Avishay Traeger, Kumar Thangavelu, and Erez Zadok

Stony Brook University Computer Science Department
Stony Brook, NY 11794-4400
{atraeger,kvthanga,ezk}@cs.sunysb.edu
Appears in the proceedings of the Third ACM Workshop on Storage Security and Survivability (StorageSS 2007)

ABSTRACT

With the advent of NFS version 4, NFS security is more imparta
than ever. This is because a main goal of the NFSv4 protosaits
ability for use on the Internet, whereas previous versioasvused
mainly on private networks. To address these security gosce
the NFSv4 protocol utilizes the RPCSEESS protocol and allows
clients and servers to negotiate security at mount-timewdver,
this provides privacy only while data is traveling over thizay

We believe that file servers accessible over the Internetldho
contain only encrypted data. We present a round-trip pyigabeme
for NFSv4, where clients encrypt file data for write requestsd
decrypt the data for read requests. The data stored by therser
behalf of the clients is encrypted. This helps ensure pyivathe
server or storage is stolen or compromised. As the NFSv4pobt
was designed with extensibility, it is the ideal place to aoighd-
trip privacy. In addition to providing a higher level of seitu than
only over-the-wire encryption, our technique is more eéfiti as
the server is relieved from performing encryption and dption.
We developed a prototype of our round-trip privacy schemeur
performance evaluation, we saw throughput increases af g%,
as well as good scalability.

Categories and Subject Descriptors

D.4.6.a Pperating System$: Security and Privacy Protection—
Cryptographic controls

General Terms
Security, Performance

Keywords
Encryption, NFSv4, Round-trip

*This work was partially made possible by the NSF HECURA
CCF-0621463 award and an IBM Faculty Award.

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

StorageSS’'070ctober 29, 2007, Alexandria, Virginia, USA.

Copyright 2007 ACM 978-1-59593-891-6/07/001($5.00.

1. INTRODUCTION

The first two stated goals of NFS version 4 are “improved axces
and good performance on the Internet” and “strong securitip w
negotiation built into the protocol” [19]. Whereas prevéotersions
of NFS were designed for private networks, NFSv4 was designe
to be used over the Internet. NFS systems will clearly beédrard
to secure in this environment, as reflected by the NFSv4 gbal o
having strong built-in security.

The NFSv4 protocol provides this strong security by utilizthe
RPCSECGSS protocol [6]. RPCSEGSS provides authentica-
tion, integrity, and privacy. Although RPCSEGSS secures com-
munications between clients and servers, file data resglekear-
text in the server's caches and storage. This leaves datenaldle,
especially for NFSv4 servers that are open to connectiam the
Internet. Additionally, if servers see only cipher-texgnepanies
could offer storage outsourcing services using NFSv4. &/ses-
vices are attractive as they reduce data management costefs.

The standard RPCSEGSSprivacy service provides authenti-
cation, integrity, and privacy on the wire. We developed mumnd-
trip privacy scheme as a new RPCSESS service called-privacy.
With rt-privacy, clients encrypt file data onr i t e operations, and
decrypt it onr ead operations. Other parts of the RPC are en-

write read write read

Client Client

NFSv4 Client

NFSv4 Client

RPCSEC_GSS

ext3

ext3

Server Server

(a) RPCSEC_GSS privacy
service

(b) RPCSEC_GSS rt—privacy
service

Figure 1: A comparison of the current RPCSECGSS privacy
service and our round-trip privacy (rt-privacy) service. The ar-
rows depict data transfers, where the white portions represnt
clear-text file data and the black portions represent cipheitext.

crypted over the wire as they are in thevacy service. Addition- is especially bad since the server, which is usually theoperdnce
ally thert-privacy service provides the same authentication and in- bottleneck in a network file system, is doing unnecessarnkwor

tegrity on the wire agprivacy. In our scheme, clear-text file data Another possibility would be to encrypt the file data at tHer,
resides only on authenticated clients. This is depictedgarie 1. above the NFS layer, perhaps by using a stackable file systeim s
NFSv4 was designed with extensibility in mind. This allowed as NCryptfs [21] or eCryptfs [9]. Stackable file systems avser
to integrate stronger privacy without modifying the praibcBe- ful technique for adding functionality to existing file sgats [23].
cause NFSv4 utilizes RPCSEESS, which is also an extensible Stackable file systems overlay anothmverfile system (the NFSv4
protocol, we were able to cleanly introduce a new privacyiser client in this case), and intercept file system events aral lolatind
that is negotiated at mount-time. Additionally, the extbitisy of from user processes to the lower file system. In the case ofenc
RPCSECGSS meant that we could leverage a secure and estab-tion stackable file systems, file data is encryptedwoint e oper-
lished protocol, rather than create a new one. ations before passing it to the lower file system, and is qded/
A trade-off often exists between security and performarides onr ead operations after it is received from the lower file system.
rt-privacy service not only provides better privacy, but also relieves However, this scheme does not provide authentication aagrity,
the server from performing encryption and decryption ondi¢a. and provides privacy only for file data (not for NFS commanad a
This is an important savings, as the server is generally tite b arguments). If one were to use RPCSEGS to provide this, then
tleneck in client-server environments. Our performancalie+ clients would be encrypting file data twice far i t e requests, and
tion shows that althougft-privacy has degraded throughput when servers would be decrypting once. Servers encrypt file date,0
performing sequential reads with read-ahead, all otheklwads and clients decrypt twice faread requests. This puts less load on

tested show an improvement—as much as 24%. Additionally, we the server than the previous scheme, but unnecessary wetil is
benchmarkedt-privacywith as many as 96 processes, and saw that being performed.

it scales well. One additional method for implementing round-trip privaeyuld
The rest of this paper is organized as follows. We discusded! be to add a new RPCSEGSS privacy service type that would not
work in Section 4. We describe the design and implementatfon encrypt or decrypt file data. A user could then mount an encryp
our new privacy service in Section 2, and evaluate its paréorce tion stackable file system on top of the NFS client to handée th
in Section 3. We conclude in Section 5. encryption and decryption of file data. The benefit of using th
design is that it relies on stackable file systems that aeadir in
2. DESIGN AND IMPLEMENTATION use, and does not perform unnecessary encryption or déeamypt

operations. One downside is that it would be difficult to cbor
nate the privacy settings between the stackable file systehthe
RPC layer. The system would need to be carefully configured to
1. Privacy: only authenticated clients should have access to ensure that anything not being encrypted at the RPC layebesas
clear-text data. ing encrypted by the stackable file system. Additionallyydauld
be difficult to implement a feature where the user could seiely
2. Efficiency: the server should be freed from encrypting and encrypt files on storage because information about which éite
decrypting data. encrypted would need to traverse several programming sayer-
other concern with this design is that performance may sibiée
cause of adding an additional file system layer, and is ekated
by the fact that the stackable file system performs its owhiocac
Since both the stackable file system and the NFS client wiltha
their own caches, the cache size is effectively halved, fwhen

2.1 Threat Model impact performgnce. o .
We assume that only authenticated clients are trusted, feaid t we chosg to implement ouEr Grosund-tnp privacy scheme by. @dm
the network, unauthenticated clients, as well as the NF&wes a new service type to RPCS S. T_he NFSv4 prot_ocol_utlhz¢_33
are untrusted. Our goal is to ensure privacy while data isgei the RPCSEGSSS protocol [6] to provide authentication, integrity,
transmitted over the network and while it resides on theasgboth and privacy. RPCSF—G.SS uses the_ GSS-API (Gen_enc Security
in memory and on persistent storage). We do not currentlygoe Service API), and can|sts of security gontext greatlonCRBta
attackers from maliciously modifying or deleting data. Hawsr exchange, and security context destruction. During sgoccointext

. . 2) creation, a client may specify the security mechanism, theliy
Vn\:?) dp;]l‘}':::r;ttit())npSrOVIde round-trip integrity in the future to detidle of Protection (cryptographic algorithm to be used), andtyipe of

service. The current security mechanisms implemented hyx.i

2.2 Round-Trip Privacy are Kerberos and SPKM-3. The type of service is onprofacy,
integrity, or none All types of service perform authentication, and
privacyincludes integrity as well. Once a context is set up success-
fully, the RPC data exchange phase may begin. When the bient
finished the data exchange, it informs the server that it ngdore-
quires the security context, and the context is then destroy

We have added a new service type caltegrivacy (round-trip
privacy) to the existing RPCSEGSS service types. For opera-
tions other thamr ead andwri t e, rt-privacy is identical topri-
vacy, providing authentication, integrity, and privacy ovee thire.
Forwr i t e operations, the file data is encrypted using strong en-
cryption since it will be stored persistently, whereas thmainder
of the RPC (such as NFS commands and arguments) is encrypted

We designed our round-trip privacy scheme with two main goal
in mind:

We present our threat model in Section 2.1. We discuss the de-
sign of our round-trip privacy service in Section 2.2. Weaiése
the methods that we used for encrypting and decrypting file it
Section 2.3, and our key-management scheme in Section 2.4.

There are several possible ways to design round-trip pyifac
NFSv4. We discuss three alternatives before describing tmuit-
lustrate the benefits of our choice. One possibility is torgitc
all wire traffic (using RPCSEGSS or SSH, for example) and
separately encrypt data being written to the server's diskisis
scheme has three drawbacks. First, data is present unéedryp
the server's memory, allowing an attacker to potentiallgwiit.
Second, keys are managed on the server, which is untrushémdl, T
the same data is encrypted and decrypted multiple timesiimgées
operation. In awr i t e request, for example, the client encrypts
the data, the server decrypts the data, and then re-endrietfore
saving it to disk. Similar behavior is seentiead requests. This

as inprivacy. The file data encryption is discussed further in Sec-
tion 2.3. The server decrypts everything but the file daia;atows

the server to access the meta-data that it needs to proeeR$1D,
but leaves the data to be written to storage encrypted.r Ead
operations, the server does not encrypt the file data, bug dpe
crypt the remainder of the RPC. Using theprivacy service, the
server performs no file data encryption or decryption, réuyds
load, while providing round-trip privacy.

In addition to avoiding unnecessary encryption and de@ppt
we chose to implement our scheme as an RPCSISS service
because: (1) it allows us to encrypt all NFS-related traffigs(
cannot be done at the file system level, for example), (2)atal
us to easily distinguish file data from the rest of an RPC st tha
it can be handled separately (this is more difficult at thagpert
level, for example), (3) it allows us to implement roundstpirivacy
by adding a service to RPCSEGSS, which is well-known and
tested security protocol, and (4) the extensibility of RIECS5SS
allowed us to cleanly add this new service and have it be ragdt
at mount time.

We have implemented our RPCSEZESS service type only for
the Kerberos security mechanism, but adding it to the SPKM-3
mechanism would not be difficult. In addition to our changes t
RPCSECGSS, we modified the NFSv4 implementation to sup-

the file's extended attribute on the server. This requires the
exported file system support extended attributes, but nmastlpr
Linux file systems support this feature. Per-file keys andtaohed
in the file's in-memory inode (a per-file data structure) om¢hent.
Caching the key allows us to reduce the number of key exclzange
significantly. Although this key-management system is ity
not flexible enough for real-world use, it is sufficient forquroto-
type, and can easily be extended to provide added funciignal

A feature that was introduced in NFSv4 is thenpound proce-
dure, which allows clients to send several operations in“oom-
pound,” reducing the number of RPCs that are transmitted. We
utilize compounds to store and retrieve the per-file keyse Kéy
is stored on the firsiw i t e operation to a file, and is retrieved on
read andwr i t e operations when the key is not in the client’s
cache. The NFSv4 protocol supportamed attribute, which are
similar to extended attributes. This allows systems to tisibates
that are not explicitly supported by the protocol withoutdifp-
ing it. We would have utilized this extensibility featurettansmit
the per-file keys, but it is not yet available in the Linux NBSm-
plementation. To overcome this problem, we extended thewdFS
protocol to add a newecommended attributehese attributes are
hard-coded, unlike theamed attribute. This was the only change
made to the NFSv4 protocol, and is temporary.

port our key management (see Section 2.4). Because NFSv2 and

NFSv3 can also use RPCSEESS, porting the key management
code would allow them to use rt-privacy as well. In total, vieled
1,840 lines of code, and deleted 21 lines. The total devetopm
time was two part-time graduate student working for threeths.

2.3 File Data Encryption

By default, we encrypt file data with AES using a 128-hit key,
which is the default for other current file data encryptiostsyns [9]
(privacycurrently uses DES-64). This should be sufficiently strong
for encrypting most persistent data. If stronger privacgrgmtees
are needed however, itis trivial to use another supported/ption
algorithm or to change the key size because we utilize thex.in
kernel's flexible CryptoAPI.

The Linux implementation of NFSv4 performs write operation
at offsets that are not necessarily block-aligned nor pleiéi of
the block size, which complicates the use of a block ciphere O
possible solution to this issue is to modify NFS's write beébato
write whole, aligned blocks. However, writing a partial tkovhen
the remainder of the block is not cached would hurt perfortean
because the client would have to read a full page from theeserv
decrypt it, complete the block using the new data, and theryph
and write back the full block. Instead, we use counter-m@iER-
mode) encryption [5]. This turns the block cipher into a atre
cipher, which allows for variable-sized writes and randocoess
during decryption. CTR mode obviates the need to be conderne
with cipher block sizes and padding. We use the encryptionkol
number for the counter. It has been proven that CTR-modeypncr
tion is as secure as CBC-mode encryption [13].

2.4 Key Management

3. EVALUATION

The main questions that we wanted to answer when evaluating
the performance of our round-trip privacy scheme were:

1. With rt-privacy, the server is relieved from performing en-
cryption and decryption, but the file data encryption perfed
on the client is more costly. How will this affect workloads
where the server is not heavily loaded?

2. How well doegt-privacy scale?

We evaluated our round-trip privacy service using up to seve
identical machines; one server and up to six clients. Eachava
Dell 1800 with a 2.8GHz Intel Xeon processor, 2MB L2 cachel an
1GB of RAM. The machines were equipped with 250GB Maxtor
7L250S0 SCSI disks. Each machine used one disk as its system
disk, and the server used an additional disk for the benckhdeta.

All machines were connected with gigabit Ethernet by a dedit

HP ProCurve 3400cl switch. The machines ran Fedora Core 6 up-
dated as of May 10, 2007, kernel version 2.6.22-rc3. All Idita
systems used ext3 with extended attributes enabled. Aflist-o
stalled package versions, the kernel configuration, andrticeo-
benchmark source code are available at
www.fsl.cssunysbedy/project — secnetfhtml.

We used the Autopilot v.2.0 [20] benchmarking suite to auto-
mate the benchmarking procedure. We configured Autopilaino
all tests at least ten times, and compute 95% confidencevatser
for the mean elapsed, system, and user times using the $ttiden
distribution. In each case, the half-width of the intervasaless
than 5% of the mean. We report the mean of each set of runs.
Throughput is calculated as the amount of data transfedieidied

We have implemented a simple key-management system that carby the longest elapsed time of all client processes. As weohd

be cleanly extended to provide more advanced functionalitgh

as per-user and per-group keys. After mounting the NFSv4 file
system, the administrator enters a password on the cliémg tise

i oct| system call. The main encryption key is generated from
the password using the PKCS #5 specification [18]. Neither th
password nor the main encryption key are persistently dtdfeys

are randomly generated for each file, which are encrypteddand
crypted using the main encryption key. Per-file keys areestan

six client machines available to us, configurations invadvimore
than 6 processes used more than one process per machink (even
distributed among the clients).

To minimize the influence of consecutive runs on each otlier, a
file systems, including the exported file system, were re-mtexl
between runs. In addition, the exported file system was atede
The page, inode, and dentry caches were cleaned betweeanuns
all machines using the Linux kernell op_caches mechanism.

40

35

30»§W’\/—‘
25 P

e

15 -

Throughput (MB/second)

10 -
privacy (seq) ——

rt-privacy (seq) —<—
privacy (rand) —*—

rt—privacy (rand) —=—)

16

O 1 1 1
1 2 4 8

Number of Processes

Figure 2: Results for the sequential and random write work-
loads running on one client machine with a varying number of
processes. Note: the x-axis is logarithmic.

3.1 Write Throughput

40

35

30

25 F

20

15

Throughput (MB/second)

10 -
privacy (seq) ——
rt-privacy (seq) —<—
privacy (rand) —*—
rt—privacy (rand) v

48 96

O 1 1 1
24

Number of Processes

Figure 3: Results for the sequential and random write work-
loads running on six client machines with a varying number of
processes on each. Note: the x-axis is logarithmic.

This is because each process writes 1GB of data, and ther serve

To measure write throughput, we used sequential and random machine has 1GB of RAM. As more data is written on the server,

write workloads generated by a workload generator that wated.
Each process created a 1GB file on the server by writing 1,083 1
chunks. Each file was created in its own directory, agehc was
called at the conclusion of the benchmark.

The results for one client machine are summarized in Figure 2
As we can seett-privacy consistently performs better thami-
vacy To better explain the performance improvement, we profiled
the client’s encryption function and the server’s decryptiunction
using OSprof [12]. The profiles showed that for the one-psece
sequential workload, the client’s encryption function feprivacy
is 1.3 times slower because of the stronger encryption. kewe
while encryption on the client is marginally slower wittprivacy,
decryption on the server is 7.1 times faster because file diza
not need to be processed. Combined, the total encryptiordend
cryption time for a write request and reply is 1.9 times fastih
rt-privacy.

For sequential writes, the throughput farprivacy is approx-
imately 32.0 MB/sec, and the throughput forivacy is approx-
imately 24.4 MB/sec (approximately a 24% improvement). The
results do not improve with added processes because ofezoars
grained locking in the client code. This was confirmed with-OS
prof. If we run the experiment with two client machines, withe
process on each machine, rather than one client machinetwgth
processes, the throughput fidrprivacy increases to 40.8 MB/sec
and the throughput foprivacy increases to 31.6 MB/sec. This is
because we remove the lock contention from the client byingnn
the processes on two separate machines.

Random write behavior differs from sequential write in twaim
ways. First, the NFS client cannot coalesce as many sealenti
write requests when requests are to random locations in fie fi
However, the NFSv4 client used the default write size of 128K
and the application was writing 1MB chunks. To the NFSv4rtlie
each chunk was seen as eight sequential writes, so coaeasein
quests did not differ between the workloads. The second way i
which the behaviors differ is longer disk seeks on the sefoer
random writes. For botprivacy andrt-privacy, the random write
results with one process are statistically indistingug@drom the
corresponding sequential write results. However, whemtireber
of processes is increased, the random write performanceatges.

and is written more quickly due to the added number of clights
server must flush file data to disk more often. Additionalfythie
number of dirty pages passes a specified threshold, thetes\are
performed synchronously. This can be seen in the sharp drop i
throughput for sixteen processes in Figure 2, .

To see how well thet-privacy service scales, we ran the write
workloads using six client machines, with multiple proesssn
each (up to 96 processes in total). The results are showngin Fi
ure 3. As we can see, theprivacy service has a similar degra-
dation in throughput agrivacy, but maintains a higher throughput.
The decrease in throughput as more processes are addedts due
the server being more loaded, and requests therefore tager®o
process on average.

3.2 Read Throughput

To measure read throughput, we ran both sequential andmando
read workloads using the same configuration as the writethenc
marks. Before starting the benchmarks, we created a 1GBrfile o
the server in its own directory for each client process. Véaekd
the caches before each run.

As with the write micro-benchmark, we used OSprof to examine
the encryption and decryption overheads when running aesequ
tial workload with one process. In this case we were intekgt
the encryption method on the server and the decryption rdetho
the client. We found that fort-privacy, the client-side decryption
function was 1.2 times slower thamivacy, but its server-side en-
cryption function was 7.4 times faster because it does natyph
file data. Combined, the-privacy functions were 1.5 times faster.

Figure 4 shows the results for several processes runninge#ue
workloads on one client machine. For sequential reads with o
process, the results are statistically indistinguishalBke more are
added, we see that-privacy does not perform as well ggivacy
(the throughput fort-privacy is as much as 14.7% lower). This
was surprising, as the profiles indicate thiprivacy should be
faster. We discovered thatprivacy had lower throughput due to
the NFS client performing read-ahead. Although the seside-
encryption function performed better forprivacy, much of this
was performed off-line because of read-ahead. The clieleten-
cryption, however, has a greater effect on the elapsed time.

30
25

20

ﬁ

privacy (seq) ——
rt-privacy (seq) —<—

privacy (rand) —*—
rt—privacy (rand) —=—)

16

15

10 +

Throughput (MB/second)

O 1 1 1
1 2 4 8

Number of Processes

Figure 4. Results for the sequential and random read work-
loads running on one client machine with a varying number of
processes. Note: the x-axis is logarithmic.

30

privacy (seq) ——
rt-privacy (seq) —<—
privacy (rand) —*—
rt-privacy (rand) —=—

25 -
20

i

10

Throughput (MB/second)

24
Number of Processes

48 96

Figure 5: Results for the sequential and random read work-
loads running on six client machines with a varying number of
processes on each. Note: the x-axis is logarithmic.

By default, the Linux NFSv4 client is configured to perform at
most fifteen read-ahead RPCs. In the source code, the astates
that users working over a slow network may want to reduce the
amount of read-ahead for improved interactive responsis mhay
be a common scenario with NFSv4 since it was designed to laok use
over the Internet. By reducing the maximum number of reaghdh
RPCs to 1, we saw that the throughput foprivacy was between
4.2% and 23.0% higher thamivacy. It should be noted that evenin
situations where throughput suffered, the server perfdrsignif-
icantly less work when using-privacy, alleviating load from the
server machine that is generally the bottleneck. When ngtiie
random read workload, the throughput foiprivacy is as much as
10.4% higher than that q@rivacy. This is because the Linux kernel
reduces read-ahead when it sees that read-ahead is noiveffec

We ran the read workloads using six client machines to oleserv
how wellrt-privacy scales. As we can see from Figuratsprivacy
and privacy behave almost identically, showing that scalability is
not affected by the stronger security.

4. RELATED WORK

In this section we describe other cryptographic systemseer

NFS-based systems.

Several file systems have utilized NFS to add privacy to a sys-
tem. Matt Blaze's CFS [2] is a cryptographic file system tlsat i
implemented as a user-level NFS server. An encrypted dingct
is associated with an encryption key and is explicitly dtetby
the user by specifying the key. Once attached, CFS creatiesca d
tory in the mount point that acts as an unencrypted windovhéo t
user’s data. A later paper [3] explores key escrow and theotise
smart cards to store user keys. Due to its user-space imptame
tion, context switches and data copies hinder CFS’s pedaona.
Additionally, CFS uses a single key to encrypt all files under
attached directory, which reduces security.

TCFS [4] is a cryptographic file system that is implemented as
modified kernel-mode NFS client. To encrypt data, a useraets
encrypted attribute on files and directories within the NF&umnt
point. Every user and group is associated with a differentygn
tion key which is protected using the Unix login password and
stored in a local file. A second scheme also supports Kerberos
based key management. Group access to encrypted resosirces i
limited to a subset of the members of a given Unix group, while
allowing for a mechanism for reconstructing a group key when
member of a group is no longer available. TCFS has severdt-wea
nesses that make it less than ideal for deployment. Firstrah
liance on login passwords as user keys is not sufficientlyreec
Also, storing encryption keys on disk in a key database &urtk-
duces security. Finally, TCFS is available only on systenits w
Linux kernel 2.2.17 or earlier, limiting its availability.

The Self-certifying File System (SFS) [14] is an encrypttbe-
wire system which uses NFS to achieve portability. Users-com
municate with a local SFS client using NFS RPC calls. Thetlie
communicates with a remote SFS server which talks to an NFS
server residing on the same machine. SFS-RO [7] is based $n SF
and supports encryption on the server-side disk. Howetgausage
is limited to read-only data; file modification is not supeatt

Stackable file systems.

Stackable encryption file systems are portable becausectrey
stack on top of any existing file system. These file systemsean
layered on an NFS client to write encrypted data to a remctie. di
This would encrypt file data, but NFS-related informationutzb
be leaked on the wire because RPC procedure names arguments
would not encrypted. The main disadvantage of stackableyie
tems is the performance penalty incurred by the additionadl|of
indirection introduced and the need to have additionaldsyfages
to hold the unencrypted data. Cryptfs [22] is the first fileteys of
this type, and bases its keys on process session IDs andasser |

NCryptfs [21] enhanced Cryptfs to support multiple coneutr
authentication methods, multiple dynamically-loadalyers, ad-
hoc groups, challenge-response authentication and tirmémkeys,
active sessions and authorizations. NCryptfs uses a skayl@¢o
encrypt all the files in a mount point which has to be set when
the file system is mounted. IBM’s eCryptfs [9], another Cfgpt
derived file system, provides advanced key management dnd po
icy features. eCryptfs stores the encryption key as a pattefile
or in an extended attribute, and an attempt to access anpmadry
file will result in a callback to a user space utility which lihen
prompt the user for the password.

Key management techniques.
In addition to the key management techniques discusseckin th

mote storage. We first discuss systems that are based on NFS ocontext of the systems above, other network storage syaisets
stackable file systems. We then focus on key management, andvarious techniques to manage their keys. Both AFS [10] an8Dif8]

approaches used to reduce the load on file servers.

use Kerberos to provide security, but both encrypt data onlthe

wire, and not on the storage, which decreases security aietpe 7. REFERENCES
mance [17]. SNAD [16] expands NASD to provide on disk encryp- [1] A. Aggarwal. Extensions to NFSv4 for checksums. TechhReport

tion. However, the main contribution from SNAD is a PKI-bdse Internet-Draft, Network Working Group, May 2006.

key management system. The symmetric key used to encrypt the [2] M. Blaze. A cryptographic file system for Unix. IRroc. of the first

file is encrypted with the public keys of the users who arevai ACM Conf. on Computer and Communications Secupity 916,

to access the file. Users can then access the file by decrytpng a ;a'ggevielgii Cadement in an encrvoting file SvstenPioc. of

symmetrlc k,ey using thelr p_rlvate keys, and then dgcryplhmg‘lle. . the Summer{JSEng Technical Corpipr.y%—gs, Bo}slton, MA, June
Microsoft's Encrypting File System (EFS) [15] is an extemsi 1994,

to NTFS and utilizes Windows authentication methods as ael| [4] G.Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiahe.design

Windows ACLs. EFS stores keys on the disk in a lockbox that is and implementation of a transparent cryptographic filesysfior

encrypted using the user’s login password. Unix. In Proc. of the Annual USENIX Technical Conf., FREENIX
Another approach to manage keys is explored by the Secwe Fil Track pp. 245-252, Boston, MA, June 2001.

System [11]. It creates an ACL for each file that contains teess [5] W. Diffie and M. E. Hellman. Privacy and authenticationn A

introduction to cryptographyProc. of the IEEE67(3):397—427,
1979.

M. Eisler, A. Chiu, and L. Ling. RPCSEGSS protocol

permissions on the file. The file system encrypts the file kaygus

a trusted group server’s public key and stores it as a paheofite 6

—_

me_tadata' The access request 'S_' th_en forwarded to the geougr's specification. Technical Report RFC 2203, Network Working®,
which enforces the access permissions set in the ACL. September 1997.

[7] K. Fu, M. F. Kaashoek, and D. Mazi‘eres. Fast and secigtildiited
Reducing server load. read-only file systenComputer System20(1):1-24, 2002.

Different approaches have been used to reduce the load on the [8] H. Gobioff. Security for a High Performance Commodity Storage
server. SFS-RO, like rt-privacy, avoids performing anyptoy SubsystenPhD thesis, Carnegie Mellon University, May 1999.

: : : [9] M. Halcrow. eCryptfs: a stacked cryptographic filesystéinux
graphic operations on the server to give better performanite Journal (156):54-58, April 2007.

storgg data in the encrypted form on untrusteq servers ttrabe [10] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
modlfled_only by_the owner. AFS [10], a distributed file system_ M. Satyanarayanan, R. N. Sidebotham, and M J. West. Scale and
caches file data in a local disk cache. NASD [8] proposes a dis- performance in a distributed file syste®WCM Transactions on
tributed network of storage drives, which relieves the seftom Computer System6(1):51-81, February 1988.

handling data transfers. Authorized users use capabikitained [11] J. P. Hughes and C. J.Feist. Architecture of the seclargfstem. In
from the server to access network-attached disks directly. Proc. of the 18th International IEEE Symposium on Mass §era

Systems and Technologigp. 277-290, San Diego, CA, April 2001
[12] N. Joukov, A. Traeger, R. lyer, C. P. Wright, and E. Zadok

5. CONCLUSIONS Operatln_g system prof|'||ng via latency anaIyS|sP|mc. of the 7t_h
)) .) Symposium on Operating Systems Design and Implementapion

We designed a new round-trip privacy scheme for NFSv4 which 89-102, Seattle, WA, November 2006. ACM SIGOPS.
was implemented as a new RPCSEGSS service called-privacy. [13] H. Lipmaa, P. Rogaway, and D. Wagner. CTR-mode enasyptin
This allows for stronger privacy, which is especially imgort when In First NIST Workshop on Modes of Operati@altimore, MD,
using NFSv4 over the Internet. October 2000. NIST. ,

We leveraged the extensibility of the established RPCEESS (14] g-e['\)"a?;'tierzgske'\;/' -n*f:r?;g‘:r']‘qye'r']\f-fr';-mKg;sg)‘/’;';rﬁ’;‘;;}i\g':ggeof e
protocc_)I _t(_) seamlessly add our security service. We al$iaedithe _ 17th ACM Symposium on Operating Systems Principies
extensibility of NFSv4 to add our key management system-with 124-139, Charleston, SC, December 1999
out modifying the protocol. Our privacy service not only yickes [15] Microsoft Research. Encrypting file system for windo2@00.
increases security, but also reduces the load on the seiven w Technical report, Microsoft Corporation, July 1999.
compared to other privacy options. In our experiments we saw [16] E. Miller, W. Freeman, D. Long, and B. Reed. Strong sitgtdor
that rt-privacy often significantly improved throughput and scaled network-attached Storage. Rroc. of the First USENIX Conf. on File
well. We have made the source code foprivacy available at and Storage Technologiep. 1-13, Monterey, CA, January 2002.

[17] E. Riedel, M. Kallahalla, and R. Swaminathan. A framgwior

www.fsl.cssunyshedu/project — secnetfditml.
Y Y proj evaluating storage system securityAroc. of the First USENIX

Conf. on File and Storage Technologigg. 15-30, Monterey, CA,

Future Work. January 2002.

We plan to implement a more flexible key management scheme, [18] RSA Laboratories. Password-based cryptography srahd
and allow users to specify which files should be stored inygted Technical Report PKCS #5, RSA Data Security, March 1999.
form. We also plan to encrypt meta-data, such as file namexd-in [19] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, Carie,
dition, we can further modify our RPCSEGSS service to allow M. Eisler, and D. Noveck. NFS Version 4 Protocol. TechnicapBrt

Lo : : : RFC 3530, Network Working Group, April 2003.
for round-trip integrity [1]. We will also look into potersl perfor-
P grity [1] P P [20] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and. Eadok.

man_ce improvements gained from Incorporatlng compressikm Auto-pilot: A platform for system software benchmarking.Rroc.
rt-privacy. Data can be compressed before being encrypted, and of the Annual USENIX Technical Conf., FREENIX Trgmi

decompressed after being decrypted. This can potentiajtyave 175-187, Anaheim, CA, April 2005.
performance in systems that have network or disk bottlesieak [21] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A seetand
well as saving disk space on the server. convenient cryptographic file system.mmoc. of the Annual

USENIX Technical Confpp. 197-210, San Antonio, TX, June 2003.
[22] E. Zadok, |. Badulescu, and A. Shender. Cryptfs: Alsatte vnode

6. ACKNOWLEDGMENTS level encryption file system. Technical Report CUCS-021-98
. . . Computer Science Department, Columbia University, Jurg819
We thank the anonymous reviewers and J. Bruce Fields far thei [23] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P. Wzi@n

comments, the Linux NFSv4 developers for their prompt respe incremental file system developmeACM Transactions on Storage
and bug fixes, Radu Sion for his advice in the initial stagethef (TOS) 2(2):161-196, May 2006.
work, and Justin Seyster for recommending CTR-mode enicrypt

