
Kernel Support for Stackable File Systems
Josef Sipek, Yiannis Pericleous, and Erez Zadok

Stony Brook University

Appears in the proceedings of the 2007 Ottawa Linux Symposium (OLS 2007)

Abstract

Although it is now possible to use stackable (lay-
ered) file systems in Linux, there are several issues
that should be addressed to make stacking more re-
liable and efficient. To support stacking properly,
some changes to the VFS and VM subsystems will
be required. In this paper, we discuss some of the
issues and solutions proposed at the Linux Storage
and Filesystems workshop in February 2007, our
ongoing work on stacking support for Linux, and
our progress on several particular stackable file sys-
tems.

1 Introduction
A stackable (layered) file system is a file system
that does not store data itself. Instead, it uses an-
other file system for its storage. We call the stack-
able file system the upper file system, and the file
systems it stacks on top of the lower file systems.

Although it is now possible to use stackable file
systems, a number of issues should be addressed
to improve file system stacking reliability and ef-
ficiency. The Linux kernel VFS was not designed
with file system stacking in mind, and therefore it
comes as no surprise that supporting stacking prop-
erly will require some changes to the VFS and VM
subsystems.

We use eCryptfs and Unionfs as the example
stackable file systems to cover both linear and fan-
out stacking, respectively.

eCryptfs is a cryptographic file system for Linux
that stacks on top of existing file systems. It pro-
vides functionality similar to that of GnuPG, except
that encrypting and decrypting the data is transpar-
ent to the application [1–3].

Unionfs is a stackable file system that presents
a series of directories (branches) from different file
systems as one virtual directory, as specified by the
user. This is commonly referred to as namespace

unification. Previous publications [4–6] provide de-
tailed description and some possible use cases.

Both eCryptfs and Unionfs are based on the FiST
stackable file system templates, which provide sup-
port for layering over a single directory [7]. As
shown in Figures 1(a) and 1(b), the kernel’s VFS is
responsible for dispatching file-system–related sys-
tem calls to the appropriate file system. To the VFS,
a stackable file system appears as if it were a stan-
dard file system. However, instead of storing or
retrieving data, a stackable file system passes calls
down to lower-level file systems. In this scenario,
NFS is used as a lower-level file system, but any file
system can be used to store the data as well (e.g.,
Ext2, Ext3, Reiserfs, SQUASHFS, isofs, tmpfs,
etc.).

To the lower-level file systems, a stackable file
system appears as if it were the VFS. Stackable file
system development can be difficult because the file
system must adhere to the conventions of both the
file systems for processing VFS calls, and of the
VFS for making VFS calls.

Without kernel support, stackable file systems
suffer from inherent cache coherency problems.
These issues can be divided into two categories: (1)
data coherency of the page cache contents, and (2)
meta-data coherency of the dentry and inode
caches. Changes to the VFS and the stackable file
systems are required to remedy these problems.

Moreover, lockdep, the in-kernel lock valida-
tor, “observes” and maps all locking rules as they
dynamically occur, as triggered by the kernel’s nat-
ural use of locks (spinlocks, rwlocks, mutexes, and
rwsems). Whenever the lock validator subsystem
detects a new locking scenario, it validates this new
rule against the existing set of rules. Unfortunately,
stackable file systems need to lock many of the VFS
objects in a recursive manner, triggering lockdep
warnings.

To maintain the upper to lower file system map-

1



NFS

eCryptfs
nfs_rename()

User Process
rename()

vfs_rename()

Virtual File System

Ke
rn

el
U

se
r

ecryptfs_rename()

(a) eCryptfs layers over a single directory.

Unionfs

... NFStmpfs
tmpfs_rename() nfs_rename()

RORW

User Process
rename()

vfs_rename()

unionfs_rename()

Virtual File System

Ke
rn

el
U

se
r

(b) Unionfs layers over multiple directories.

Figure 1: The user processes issue system calls, which the kernel’s virtual file system (VFS) directs to stackable file
systems. Stackable file systems in turn pass the calls down to lower-level file systems (e.g., tmpfs or NFS).

ping of kernel objects (such as dentrys, inodes,
etc.), many stackable file systems share much of
the basic infrastructure. The 2.6.20 kernel intro-
duced fs/stack.c, a new file that contains sev-
eral helper functions useful to stackable file sys-
tems.

The rest of this paper is organized as follows. In
Section 2 we discuss the cache coherency issues. In
Section 3 we discuss the importance of locking or-
der. In Section 4 we discuss fsstack, the emerg-
ing Linux kernel support for stacking. In Section 5,
we discuss a persistent store prototype we devel-
oped for Unionfs, which can be of use to others.
Finally, we conclude in Section 6.

2 Cache Coherency
There are two different cache coherency issues that
stackable file systems must overcome: data and
meta-data.

2.1 Data Coherency
Typically, the upper file system maintains its own
set of pages used for the page cache. Under ideal
conditions, all the changes to the data go through
the upper file system. Therefore, either the up-
per file system’s write inode operation or the
writepage address space operation will have a
chance to transform the data as necessary (e.g.,
eCryptfs needs to encrypt all writes) and write it
to the lower file system’s pages.

Data incoherency occurs when data is written to

the lower pages directly, without the stacked file
system’s knowledge. There are two possible solu-
tions to this problem:

Weak cache coherency : NFS also suffers from
cache coherency issues as the data on the
server may be changed by either another client
or a local server process. NFS uses a number
of assertions that are checked before cached
data is used. If any of these assertions fail,
the cached data is invalidated. One such asser-
tion is a comparison of the ctime with what
is cached, and invalidating any potentially out-
of-date information.

Strong cache coherency : Another possible so-
lution to the cache coherency problem is to
modify the VFS and VM to effectively in-
form the stackable file systems that the data
has changed on the lower file system. There
are several different ways of accomplishing
this, but all involve maintaining pointers from
lower VFS objects to all upper ones. Regard-
less of how this is implemented, the VFS/VM
must traverse a dependency graph of VFS ob-
jects, invalidate all pages belonging to the cor-
responding upper addresses spaces, and sync
all of the pages that are part of the lower ad-
dress spaces.

Both approaches have benefits and drawbacks.
The major benefit of the weak consistency ap-

proach is that the VFS does not have to be modi-

2



fied at all. The major downside is that every stack-
able file system needs to contain a number of these
checks. Even if helper functions are created, calls
to these functions need to be placed throughout the
stackable file systems. This leads to code duplica-
tion, which we try to address with fsstack (see
Section 4).

The most significant benefit of the stronger co-
herency approach is the fact that it guarantees that
the caches are always coherent. At the same time,
it requires that the file system use the page cache
properly, and that the file system supplies a valid
address space operations vector. Some file sys-
tems do not meet these requirements. For exam-
ple, GPFS (created by IBM) only has readpage
and writepage, but does not have any other ad-
dress space operations. If the cache coherency is
maintained at the page-cache level, the semantics
of using a lower file system that does not define the
needed operations would be unclear.

2.2 Meta-Data Coherency
Similar to the page cache, many VFS objects,
such as the cached inode and dentry objects,
may become inconsistent. The meta-data contained
in these caches includes the {a,c,m}times, file
size, etc.

Just as with data consistency, either a strong or a
weak cache coherency model may be used to pre-
vent the upper and lower VFS objects from dis-
agreeing on the file system state. The benefits
and drawbacks stated previously apply here as well
(e.g., weak coherency requires code duplication in
most stackable file systems).

2.3 File Revalidation
The VFS currently allows for dentry revalida-
tion. NFS and other network file system are
the few users of this. A useful addition to this
dentry revalidation operation would be an equiv-
alent file operation. Given a struct file,
this would allow the file system to check for va-
lidity and repair any inconsistencies.

Unionfs works around the lack of file revali-
dation by calling its own helper function in the ap-
propriate struct file operations. The reason
Unionfs requires this is due to the possibility of a
branch management operation changing the num-

ber or order of branches, and the lower struct
file pointers need to be updated.

3 Locking Order
Since stackable file systems must behave as both a
file system and the VFS, they need to lock many of
the VFS objects in a recursive manner, triggering
warnings about potential deadlocks. The in-kernel
lock validator, lockdep, dynamically monitors
the kernel’s usage of locks (spinlocks, rwlocks, mu-
texes and rwsems) and creates rules. Whenever the
lock validator subsystem detects a new locking sce-
nario, it validates this new rule against the existing
set of rules.

The lockdep system is aware of
locking dependency chains, such as:
parent→child→xattr→quota. However, it does not
understand that a stackable file system may cause
recursion in the VFS. For example, the VFS may
indirectly (but safely) call itself; vfs readdir
can call a stackable file system on one directory,
which can in turn call vfs readdir again on
other lower directories. Each time vfs readdir
is called, the corresponding i mutex is taken.
This triggers a lockdep warning, as it considers
this situation a potential place for a deadlock, and
warns accordingly. In other words, lockdep
needs to be informed of the hierarchies between
stacked file systems. This, however, would require
adding a “stacked” argument to many func-
tions in the VFS, and passing that information to
lockdep.

4 fsstack
The code duplication found in many stackable file
systems (such as eCryptfs, Unionfs, and our up-
coming cachefs) is another problem. The 2.6.20
kernel introduced fs/stack.c, a new file, which
contains several useful helper functions. We are
working on further abstractions to the stacking API
in Linux.

Each stackable file system must maintain a set
of pointers from the upper (stackable file system)
objects to the lower objects. For example, each
Unionfs inodemaintains a series of lower inode
pointers.

Currently, there are two ways to keep track of
lower objects. Linear (one lower pointer) and fan-

3



out (several lower pointers). Fan-out is the more
interesting case, as linear stacking is just a special
case of fan-out, with only one branch. Quite fre-
quently, Unionfs needs to traverse all the branches.
This creates the need for a for each branch
macro (analogous to for each node), which
would decide when to terminate.

A “reference” stackable file system, much like
NullFS in many BSDs, would allow stackable file
system authors to easily create new stackable file
systems for Linux. This reference file system
should use as many of the fsstack interfaces
as possible. Currently, the closest thing to this is
Wrapfs [7], which can be generated from FiST.
Unfortunately, the generated code does not follow
proper coding style and general code cleanliness.

In Section 2.1, we considered a weaker form of
the cache coherency model. This model suffers
from the fact that a large number of the coherency
checks (e.g., checking the {a,c,m}times) will
need to be duplicated in each stackable file system.
Using fsstack avoids this problem by making
use of generic functions to perform operations com-
mon to all stackable file systems. The code neces-
sary to invalidate and revalidate the upper file sys-
tem objects could be shared by several file systems.
However, each file system must call these helper
functions. If a bug is discovered in one stackable
file system (e.g., a helper function should be called
but is not), the fix may have to be ported to other
file systems.

Stackable file systems must behave as a file sys-
tem from the point of view of the VFS, yet they
must behave as the VFS from the point of view of
the file systems it is stacked on top of. Generally,
the most complex code occurs in the file system
lookup code. One idea, proposed at the 2007 Linux
Storage and Filesystem workshop, was to divide the
current VFS lookup code into two portions, and to
allow the file system to override part of the func-
tionality via a new inode operation. The default
operation would have functionality identical to the
current lookup code. The flexibility allowed by this
code refactoring would simplify some of the code
in more complex file systems. For example, Ext2
could use the generic lookup code provided by the
VFS, while a file system requiring more complex
lookup code, such as Unionfs, can provide its own

lookup helper which performs the necessary opera-
tions (e.g., to perform namespace unification).

5 On Disk Format (ODF)
We have developed an On Disk Format (ODF) to
help Unionfs 2.0 persistently store any meta-data
it needs, such as whiteouts. ODF is a small file
system on a partition or loop device. The ODF
has helped us resolve most of the critical issues
that Unionfs 1.x had faced, such as namespace pol-
lution, inode persistence, readdir consistency
and efficiency, and more. Since, all the meta-data
is kept in a separate file system instead of in the
branches themselves, Unionfs can be stacked on top
of itself and have overlapping branches.

Such a format can be used by any stackable file
system that needs to store meta-data persistently.
For example, a versioning file system may use it to
store information about the current version of a file,
a caching file system may use it to store information
about the status of the cached files. Unionfs bene-
fits in many ways as well, for example there is no
namespace pollution, and Unionfs can be stacked
on itself.

By keeping all the meta-data together in a sepa-
rate file system, simply creating an in-kernel mount
can be used to easily hide it from the user, assur-
ing that the user will not temper with the meta-data.
Also, it becomes easier to backup the state of the
file system by simply creating a backup of the ODF
file system. If a file system which statically allo-
cates inode tables is used, the user must estimate
the number of inodes and data blocks the ODF
will need before hand. Using a file system which
allocates inode blocks dynamically (e.g., XFS)
fixes this problem. This is a shortcoming of the file
system, and not ODF itself.

The ODF can use another file system, such as
Ext2 or XFS, to store the meta-data. Another pos-
sibility we are looking at for the future is to build
an ODF file system that will have complete control
of how it stores this meta-data, thus allowing us to
make it more efficient, flexible and reusable.

6 Conclusion
Stackable file systems can be used today on Linux.
There are some issues which should be addressed
to increase their reliability and efficiency. The ma-

4



jor issues include the data and meta-data cache
coherency between the upper and lower file sys-
tems, code duplication between stackable file sys-
tems, and the recursive nature of stacking causing
lockdep to warn about what it infers are possi-
ble deadlocks. Addressing these issues will require
changes to the VFS/VM.

7 Acknowledgements
The ideas presented in this paper were inspired
and motivated by numerous discussions with the
following people: Russel Catalan, Dave Chinner,
Bruce Fields, Steve French, Christoph Hellwig,
Eric Van Hensbergen, Val Henson, Chuck Lever,
Andrew Morton, Trond Myklebust, Eric Sandeen,
Theodore Ts’o, Al Viro, Peter Zijlstra, and many
others.

This work was partially made possibly by NSF
Trusted Computing Award CCR-0310493.

References
[1] M. Halcrow. eCryptfs: a stacked cryptographic

filesystem. Linux Journal, (156):54–58, April
2007.

[2] M. A. Halcrow. Demands, Solutions, and
Improvements for Linux Filesystem Security.
In Proceedings of the 2004 Linux Symposium,
pages 269–286, Ottawa, Canada, July 2004.
Linux Symposium.

[3] M. A. Halcrow. eCryptfs: An Enterprise-class
Encrypted Filesystem for Linux. In Proceed-
ings of the 2005 Linux Symposium, pages 201–
218, Ottawa, Canada, July 2005. Linux Sym-
posium.

[4] D. Quigley, J. Sipek, C. P. Wright, and
E. Zadok. UnionFS: User- and Community-
oriented Development of a Unification Filesys-
tem. In Proceedings of the 2006 Linux Sym-
posium, volume 2, pages 349–362, Ottawa,
Canada, July 2006.

[5] C. P. Wright, J. Dave, P. Gupta, H. Krishnan,
D. P. Quigley, E. Zadok, and M. N. Zubair. Ver-
satility and unix semantics in namespace unifi-
cation. ACM Transactions on Storage (TOS),
2(1):1–32, February 2006.

[6] C. P. Wright and E. Zadok. Unionfs: Bring-
ing File Systems Together. Linux Journal,
(128):24–29, December 2004.

[7] E. Zadok and J. Nieh. FiST: A Language for
Stackable File Systems. In Proc. of the Annual
USENIX Technical Conference, pages 55–70,
San Diego, CA, June 2000. USENIX Associ-
ation.

5


