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Administrators often prefer to keep related sets of files in different locations or media, as it

is easier to maintain them separately. Users, however, prefer to see all files in one location for

convenience. One solution that accommodates both needs is virtual namespace unification—

providing a merged view of several directories without physically merging them. For example,

namespace unification can merge the contents of several CD-ROM images without unpacking

them, merge binary directories from different packages, merge views from several file servers, and

more. Namespace unification can also enable snapshotting, by marking some data sources read-

only and then utilizing copy-on-write for the read-only sources. For example, an OS image may

be contained on a read-only CD-ROM image—and user’s configuration, data, and programs could

be stored in a separate read-write directory. With copy-on-write unification, the user need not be

concerned about the two disparate file systems.

It is difficult to maintain Unix semantics while offering a versatile namespace unification system.

Past efforts to provide such unification often compromised on the set of features provided or Unix

compatibility—resulting in an incomplete solution that users could not use.

We designed and implemented a versatile namespace-unification system called Unionfs. Unionfs

maintains Unix semantics while offering advanced namespace-unification features: dynamic inser-

tion and removal of namespaces at any point in the merged view, mixing read-only and read-write

components, efficient in-kernel duplicate elimination, NFS interoperability, and more. Since re-

leasing our Linux implementation, it has been used by thousands of users and over a dozen Linux

distributions, which helped us discover and solve many practical problems.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management—File organization;
D.4.3 [Operating Systems]: File Systems Management—Directory structures; E.5 [Data]: Files—Organiza-
tion/structure; H.3.2 [Information Storage and Retrieval]: Information Storage—File organization
General Terms: Design, Experimentation, Management

Additional Key Words and Phrases: Namespace Management, Unification, Directory Merging,

Stackable File Systems, Snapshotting.

1. INTRODUCTION
For ease of management, different but related sets of files are often located in multiple
places. Users, however, find it inconvenient to access such split files: users prefer to see
everything in one place. One proposed solution is to virtually merge—or unify—the views
of different directories (recursively) such that they appear to be one tree; this is done with-
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out physically merging the disparate directories. Such namespace unification has the ben-
efit of allowing the files to remain physically separate, but appear as if they reside in one
location. The collection of merged directories is called a union, and each physical direc-
tory is called a branch. When creating the union, each branch is assigned a precedence and
access permissions (i.e., read-only or read-write). At any point in time new branches may
be inserted, or existing branches may be removed from the union. There are many possible
uses for namespace unification. We explore six of them next.
—Modern computing systems contain numerous files that are part of many software distri-

butions. There are often several reasons to spread those files among different locations.
For example, a wide variety of packages may be installed in separate sub-trees under
/opt. Rather than requiring users to include large numbers of directories in their PATH
environment variable, the administrator can simply unify the various components in
/opt.

—Another example of unification is merging the contents of several file servers. In a large
organization, a user may have files on a variety of servers (e.g., their personal files on
one, and each project could have its own server). However, on workstations it should
appear as if all the user’s files are in a common location—regardless of which server
the files are really on. A standard mount cannot be used because mounting two file
systems in the same place would hide the files that were mounted first. A namespace-
unification file system can simply unify the various mount points into a common di-
rectory. Lastly, file servers may come online or go offline at any time. Therefore, a
namespace-unification file system must be able to add and remove branches dynami-
cally.

—Large software collections are often distributed as split CD-ROM images because of the
media’s size limitations. However, users often want to download a single package from
the distribution. To meet both needs, mirror sites usually have both the ISO images and
the individual packages. This wastes the disk space and bandwidth because the same
data is stored on disk and downloaded twice. For example, on our group’s FTP server,
we keep physical copies of the Fedora distribution only as ISO images; we loopback-
mount the ISO images, and then we unify their contents to provide direct access to the
RPMs and SRPMs.

—It is becoming more and more common for OS software to be distributed on live CDs.
Live CDs are bootable CD-ROMs (or DVDs) that contain an entire operating system in
compressed format. Live CDs require no installation process, which simplifies admin-
istration: upgrading a machine is as simple as replacing the old CD with a new CD.
The major drawbacks of live CDs are that the file system is read-only, and configuration
changes are lost after a reboot. Unionfs can help solve both of these problems. To sup-
port the illusion of a writable CD-ROM, a high-priority RAM disk and the low-priority
CD image can be unified. When a user tries to write to a file on the CD-ROM, Unionfs
transparently copies the file to the higher-priority RAM disk. If the RAM disk is re-
placed with a persistent read-write file system, such as a USB flash drive (or hard disk),
then configuration changes can be preserved across reboots.

—Snapshotting is a useful tool for system administrators, who need to know what changes
are made to the system while installing new software [McKusick and Ganger 1999;
Hitz et al. 1994]. If the installation failed, the software does not work as advertised, or
is not needed, then the administrator often wants to revert to a previous good system

ACM Transactions on Storage ACM, Vol. 1, No. 4, Novemeber 2005.



Versatility and Unix Semantics in Namespace Unification · 3

state. Unification can provide a file system snapshot that carries out the installation of
new software in a separate directory. Snapshotting is accomplished by adding an empty
high-priority branch, and then marking the existing data read-only. If any changes are
made to the read-only data, Unionfs transparently makes the changes on the new high-
priority branch. The system administrators can then examine the exact changes made to
the system and then easily keep or remove them.

—Similarly, when an Intrusion Detection System (IDS) detects a possible intrusion, it
should prevent further changes to the file system, while legitimate users should be able
to perform their tasks. Furthermore, false alarms can be very common, so the system
should take some steps to protect itself (by carefully tracking the changes made by that
process), but not outright kill the suspicious process. If an intrusion is suspected, then
the IDS can create snapshots that the system administrator can examine afterward. If
the suspected intrusion turns out to be a false positive, the changes can be merged into
the file system. In addition to file system snapshots, Unionfs also supports sandboxing.
Sandboxes essentially create a namespace fork at the time a snapshot is taken. Processes
are divided into two (or more) classes: bad processes, which the IDS suspects are in-
trusions; and all other processes are good. The good processes write to one snapshot,
and the bad processes write to another. The good processes see only the existing data,
and changes made by other good processes. Likewise, the bad processes see only the
existing data and changes made by bad procceses. The result is that bad data is never
exposed to good processes.

Although the concept of virtual namespace unification appears simple, it is difficult to
design and implement it in a manner that fully complies with expected Unix semantics.
The various problems include handling files with identical names in the merged directory,
maintaining consistency while deleting files that may exist in multiple directories, handling
a mix of read-only and read-write directories, and more. Given these difficulties, it is not
surprising that none of the past implementations solved all problems satisfactorily.

We have designed and built Unionfs, a namespace-unification file system that addresses
all of the known complexities of maintaining Unix semantics without compromising versa-
tility and the features offered. We support two file deletion modes that address even partial
failures. We allow efficient insertion and deletion of arbitrary read-only or read-write di-
rectories into the union. Unionfs includes efficient in-kernel handling of files with identical
names; a careful design that minimizes data movement across branches; several modes for
permission inheritance; and support for snapshots and sandboxing. We have publicly re-
leased Unionfs, and it has been downloaded by thousands of users and is in use by over a
dozen other projects. This wide dissemination has helped us to discover important design
details that previous implementations have not considered. For example, maintaining a
persistent and unique inode mapping, and resuming directory reads over NFS are both cru-
cial for unifying distributed namespaces. We have also developed efficient yet easy-to-use
user-space management utilities, which are essential for a production-quality system.

The rest of this article is organized as follows. Section 2 describes our overall design
and Section 3 elaborates on the details of each Unionfs operation. Section 4 surveys related
work. Section 5 compares the features of Unionfs with those offered by previous systems.
We show that Unionfs provides new features and also useful features from past work.
Section 6 analyzes Unionfs’s performance. We show a small overhead of 0.2–1.5% for
normal workloads, and acceptable performance even under demanding workloads. We
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conclude in Section 7 and suggest future directions.

2. DESIGN
Although the concept of virtual namespace unification appears simple, it is difficult to
design and implement it in a manner that fully complies with expected Unix semantics.
There are four key problems when implementing a unification file system.

The first problem is that two or more unified directories can contain files with the same
name. If such directories are unified, then duplicate names must not be returned to user-
space or it could break many programs. The solution is to record all names seen in a
directory and skip over duplicate names. However, that solution can consume memory and
CPU resources for what is normally a simpler and stateless directory-reading operation.
Moreover, just because two files may have the same name, does not mean they have the
same data or attributes. Unix files have only one data stream, one set of permissions,
and one owner; but in a unified view, two files with the same name could have different
data, permissions, or even owners. Even with duplicate name elimination, the question
still remains which attributes should be used. The solution to this problem often involves
defining a priority ordering of the individual directories being unified. When several files
have the same name, files from the directory with a higher priority take precedence.

The second problem relates to file deletion. Since files with the same name could appear
in the directories being merged, it is not enough to delete only one instance of the file
because that could expose the other files with the same name, resulting in confusion as
a successfully deleted file still appears to exist. Two solutions to this problem are often
proposed. (1) Try to delete all instances. However, this multi-deletion operation is difficult
to achieve atomically. Moreover, some instances may not be deletable because they could
reside in read-only directories. (2) Rather than deleting the files, insert a whiteout, a special
high-priority entry that marks the file as deleted. File system code that sees a whiteout entry
for file F behaves as if F does not exist.

The third problem involves mixing read-only and read-write directories in the union.
When users want to modify a file that resides in a read-only directory, the file must be
copied to a higher-priority directory and modified there, an act called a copyup. Copyups
only solve part of the problem of mixing read-write and read-only directories in the union,
because they address data and not meta-data. Past unification file systems enforced a sim-
pler model: all directories except the highest-priority one are read-only. Forcing all but the
highest-priority branch to be read-only tends to clutter the highest-priority directory with
copied-up entries for all of the remaining directories. Over time, the highest-priority direc-
tory becomes a de-facto merged copy of the remaining directories’ contents, defeating the
physical separation goal of namespace unification.

The fourth problem involves name cache coherency. For a union file system to be useful,
it should allow additions to and deletions from the set of unified directories. Such dynamic
insertions and deletions in an active, in-use namespace can result in incoherency of the
directory name-lookup cache. One solution to this problem is to simply restrict insertions
into the namespace to a new highest-priority directory.

We designed Unionfs to address these problems while supporting n underlying branches
or directories with the following three goals:

—No artificial constraints on branches To allow Unionfs to be used in as many applica-
tions as possible, we do not impose any unnecessary constraints on the order or attributes
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of branches. We allow a mix of multiple read-write and read-only branches. Any branch
can be on any file system type. We support dynamic insertion and removal of branches
in any order. The only restriction we impose was that in a read-write union, the highest-
priority branch must be read-write. This restriction is required because a highest-priority
read-only branch cannot be overridden by another branch.

—Maintain Unix Semantics One of our primary goals was to maintain Unix semantics, so
that existing applications continue to work. A Unionfs operation can include operations
across several branches, which should succeed or fail as a unit. Returning partial errors
can confuse applications and also leave the system in an inconsistent state. Through a
careful ordering of operations, a Unionfs operation succeeds or fails as a unit.

—Scalability We wanted Unionfs to have a minimal overhead even though it consists of
multiple branches across different file systems. Therefore, we only look up a file in the
highest priority branch unless we need to modify the file in other branches; once found,
we use the OS caches to save the lookup results. We delay the creation of directories
that are required for copyup. We leave files in the branch in which they already exist and
avoid copying data across branches until required.

Next, we describe the following three general aspects of Unionfs’s design: stacking
VFS operations, error propagation, copyup and parent directory creation, and whiteouts.
We provide operational details of Unionfs in Section 3.

Stacking VFS Operations. Stackable file systems are a technique to layer new function-
ality on existing file systems [Zadok and Nieh 2000]. A stackable file system is called by
the VFS like other file systems, but in turn calls another file system instead of performing
operations on a backing store such as a disk or an NFS server. Before calling the lower-
level file system, stackable file systems can modify the operation, for example encrypting
data before it is written to disk.

Ext2 Ext2 ... ISO9660NFS
RW RO

rename()
RW

Unionfs

RO

User Process

Virtual File System (VFS)

rename()

vfs_rename()

Ke
rn

el
U
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Fig. 1. Unionfs: A stackable fan-out file system can access N different branches directly. In this example, the
branches are a read-write Ext2 file system, a read-only Ext2 file system, a read-write NFS file system, and a
read-only ISO9660 file system.

Unionfs is a stackable file system that operates on multiple underlying file systems. It
has an n-way fan-out architecture as shown in Figure 1 [Rosenthal 1990; Heidemann and
Popek 1994]. The benefit of this approach is that Unionfs has direct access to all underlying
directories or branches, in any order. A fan-out structure improves performance and also
makes our code base more applicable to other fan-out file systems like replication, load
balancing, etc.
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Unionfs merges the contents of several underlying directories. In Unionfs, each branch
is assigned a unique precedence so that the view of the union presented to the user is always
unambiguous. An object to the left has a higher precedence than an object to the right. The
leftmost object has the highest precedence.

For regular files, devices, and symlinks, Unionfs performs operations only on the left-
most object. This is because applications expect only a single stream of data when access-
ing a file. For directories, Unionfs combines the files from each directory and performs
operations on each directory. Operations are ordered from left to right, which preserves
the branch precedence. A delete operation in Unionfs may be performed on multiple
branches. Unionfs starts delete operations in reverse order, from right to left, so that if any
operation fails, then Unionfs does not modify the leftmost entry until all lower-priority op-
erations have succeeded. This preserves Unix semantics even if the operation fails in some
branches, because the user-level view remains unchanged. For all operations in Unionfs,
we take advantage of existing VFS locking to ensure atomicity.

Error Propagation. Unionfs may operate on one or more branches, so the success or the
failure of any operation depends on the successes and the failures in multiple branches. If
part of an operation fails, then Unionfs gives the operation another chance to succeed. For
example, if a user attempts to create a file and gets an error (e.g., a read-only file system
error), then Unionfs attempts to create the file to the left.

Copyup and Parent Directory Creation. Unionfs attempts to leave a file on the branch
where it initially existed. However, Unionfs transparently supports a mix of read-only and
read-write branches. Instead of returning an error from a write operation on a read-only
branch, Unionfs moves the failed operation to the left by copying the file to a higher priority
branch, a copyup.

To copy up a file, Unionfs may have to create an entire directory structure (e.g., to create
the file a/b/c/d, it creates a, b, and c first). Unlike BSD Union Mounts, which clutter
the highest-priority branch by creating the directory structure on every lookup [Pendry and
McKusick 1995], Unionfs creates directories only when they are required.

An important factor for security is the permissions of the copied-up files and the in-
termediate directories created. Unionfs provides three modes for choosing permissions:
COPYUP OWNER sets the mode and the owner to that of the original file; COPYUP CONST
sets the mode and the owner to fixed ones specified at mount time; and COPYUP CURRENT
sets the mode and the owner based on the current umask and owner of the process that initi-
ated the copyup. These policies fulfill the requirements of different sites. COPYUP OWNER
provides the security of the original file and preserves Unix semantics, but charges the
owner’s quota. COPYUP CONST allows administrators to control the new owner and mode
of copied up files. COPYUP CURRENT is useful when the current user should have full
permissions on the copied up files, and affects the current user’s quota.

The Unix permission model allows situations where a user can change a file, but cannot
change the directory in which it resides. However, if said file exists on a read-only branch,
then it must be copied up, which involves creating a new file (i.e., modifying the directory).
To solve this problem, we change the current process’s file-system user ID to the owner
of the directory before creating the file, and restore it to the original afterward. We have
previously used this technique to implement ad-hoc groups in our stackable encryption file
system [Wright et al. 2003]. Because only the copy-up operation is performed with the
ACM Transactions on Storage ACM, Vol. 1, No. 4, Novemeber 2005.
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elevated permissions and Unionfs already checked the permissions on the copied-up file,
this method does not introduce any security holes.

Whiteouts. Whiteouts are used to hide files or directories in lower-priority branches.
Unionfs creates whiteouts as zero length files, named .wh.F where F is the name of the
file or directory to be hidden. This uses an inode, but no data blocks. The whiteouts are
created in the current branch or in a higher priority branch of the current branch. One or
more whiteouts of a file can exist in a lower priority branch, but a file and its whiteout
cannot exist in the same branch. Depending on a mount-time option, Unionfs creates
whiteouts in unlink-like operations as discussed in Sections 3.5 and 3.6. Whiteouts for
files are created atomically by renaming F to .wh.F , and then truncating .wh.F . For
other types of objects, .wh.F is created, and then the original object is removed.

3. OPERATIONAL DETAILS
In this section, we describe individual Unionfs operations. First, we describe Linux VFS
objects in Section 3.1. We describe lookup and open in Section 3.2, directory reading in
Section 3.3, creating new objects in Section 3.4, deleting objects in Section 3.5, rename in
Section 3.6, dynamic branch insertion and deletion in Section 3.7, user-space utilities in
Section 3.8, and sandboxing using split-view caches in Section 3.9

3.1 VFS Objects
We discuss Unionfs using Linux terminology. Unionfs defines operations for four VFS
objects: the superblock, the inode, the file, and the directory entry. The superblock stores
information about the entire file system, such as used space, free space, and the location
of other objects (e.g., inode objects). The superblock operations include unmounting a file
system and deleting an inode. The inode object is a physical instance of a file that stores the
file data and attributes such as owner, permissions, and size. Operations that manipulate
the file system namespace, like create, unlink, and rename, are inode operations.
The file object represents an open instance of a file. Each user-space file descriptor maps
to a file object. The file operations primarily deal with opening, reading, and writing a
file. The directory entry, also called a dentry, represents a cached name for an inode in
memory. On lookup, a dentry object is created for every component in the path. If hard
links exist for a file, then an inode may have multiple names, and hence multiple dentries.
The kernel maintains a dentry cache (dcache) which in turn controls the inode cache. The
dentry operations include revalidating dentries, comparing names, and hashing names.

3.2 Lookup and Open
Lookup is one of the most important inode operations. It takes a directory inode and a
dentry within that directory as arguments, and finds the inode for that dentry. If the name
is not found, it returns a negative dentry—a dentry that does not have any associated inode.
Only the leftmost file is used for read-only meta-data operations or operations that only
modify data. Unionfs proceeds from left to right in the branches where the parent directory
exists. If the leftmost entry that is found is a file, then Unionfs terminates the search,
preventing unnecessary lookups in branches to the right. We call this early termination a
lazy lookup. In operations that operate on all underlying files, such as unlink, Unionfs
calls the lower-level lookup method on each branch to the right of the leftmost file to
populate the branches that were skipped.
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Unionfs provides a unified view of directories in all branches. Therefore if the leftmost
entry is a directory, Unionfs looks it up in all branches. If there is no instance of the file
or the directory that Unionfs is looking up, it returns a negative dentry that points to the
leftmost parent dentry.

In each branch, Unionfs also looks up the whiteout entry with the name of the object
it is looking for. If it finds a whiteout, it stops the lookup operation. If Unionfs found
only negative dentries before the whiteout dentry, then lookup returns a negative dentry
for the file or the directory. If Unionfs found any dentries with corresponding inodes (i.e.,
objects that exist), then it returns only those entries.

Inode Numbers. If an object is found during lookup, then the read inode method
is called to instantiate the corresponding in-memory inode object. A key question that
lookup must answer is what inode number to assign to the newly instantiated Unionfs
inode. There are two key requirements for inode numbers: (1) the inode number must
be unique within the Unionfs file system, and (2) the inode number should be persistent.
The first requirement, uniqueness stems from the VFS using the inode number as a key to
read the on-disk inode and user-level applications using the inode to identify files uniquely.
User-level applications retrieve files’ inode numbers to detect hard links. If two files on
the same file system have the same inode number, then applications assume that the files
are the same. If a union contains files from two branches on separate file systems, then it
is possible for the lower-level inode numbers to “trick” the application into losing one of
the files. The second requirement, persistence, is motivated by support for NFS mounts
and hard link detection. If inode numbers change, then the kernel NFS server returns a
“Stale NFS file handle” to NFS clients. User-level applications like diff compare inode
numbers to check if two files are the same, and if two files have different inode numbers,
then diff must compare the whole file, even if there are no differences.

To solve these two problems, Unionfs maintains a persistent map of unique inode num-
bers. When a file is first seen by Unionfs, it is assigned a unique Unionfs inode number
and entered into two maps: a forward map and a reverse map. The forward map trans-
lates the Unionfs inode number to the lower-level inode number and the corresponding
branch. The Unionfs inode number is also stored in a reverse map for each lower-level file
system. The reverse map is used by the lookup and readdir operations. When a file
or directory is subsequently accessed, Unionfs uses the lower-level inode as a key in the
reverse map to retrieve the correct Unionfs inode number. This prevents utilities like tar
from mistakenly identifying two distinct files as the same file, or utilities like diff from
identifying two different files as the same file. NFS file handles on Linux identify objects
using inode numbers. Therefore, when Unionfs is presented with an inode number, it must
be able to identify which object it belongs to. The forward map can be used to retrieve
the corresponding lower-level object for NFS requests. We have not yet implemented this
feature for NFS file handles, but we describe a design for it in Section 7.1.

The forward and reverse maps have a low-space overhead. The forward map has a
constant overhead of 4,377 bytes, and an overhead of 9 bytes per file or directory in the
Union. If we assume the average file size is 52,982 bytes (this is the average size on our
groups file server’s /home directory, which has over five million files belonging to 82
different users), then the space overhead is 0.017% of the used disk space. The reverse
maps each have a fixed overhead of 64 bytes, and an additional 8 bytes per inode allocated
on the lower-level file system. Most FFS-like file systems allocate a fixed number of inodes
ACM Transactions on Storage ACM, Vol. 1, No. 4, Novemeber 2005.
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per-block. For example, Ext2 allocates one inode per 4096-byte block by default. This
means that the reverse maps have a space overhead of just under 0.2% of the file system
size. Overall, the space overhead for the forward and reverse map is negligible at around
0.212%.

Open. When opening a file, Unionfs opens the lower-level non-negative dentries that
are returned by the lookup operation. Unionfs gives precedence to the leftmost file, so it
opens only the leftmost file. However, for directories, Unionfs opens all directories in the
underlying branches, in preparation for readdir as described in Section 3.3. If the file is
in a read-only branch and is being opened for writing, then Unionfs copies up the file and
opens the newly copied-up file.

3.3 Readdir
The readdir operation returns directory entries in an open directory. A directory in
Unionfs can contain multiple directories from different branches, and therefore a readdir
operation in Unionfs is composed of multiple readdir operations.

Priority is given to the leftmost file or directory. Therefore, Unionfs’s readdir starts
from the leftmost branch. Unionfs eliminates duplicate instances of files or directories with
the same name in the kernel. Any whiteout entry to the left hides the file or the directory
to the right. To eliminate duplicates, Unionfs records the names of files, directories, and
whiteouts that have already been returned in a hash table that is bound to the open instance
of the directory (i.e., in the kernel file structure). Unionfs does not return names that
have already been recorded.

Previous unification file systems either did not perform duplicate elimination, or per-
formed it in user level (e.g., in the C library). Duplicate elimination is important because
most user-space applications cannot properly handle duplicate names (e.g., a utility like
cp might copy the data twice). User-level duplicate elimination is not sufficient because
Unionfs could not be exported over NFS. Moreover, on Linux there are many C libraries
available, and changing all of them is not practical.

It is essential to find and add entries in the hash table efficiently. We use fixed-sized
hash elements that are allocated from a dedicated kernel-cache. To reduce collisions, each
directory-reading operation computes an appropriate hash-table size. The first time a di-
rectory is read, the size of the hash table is determined heuristically based on the size in
bytes of the lower-level directories. As entries are added, a counter is incremented. When
the directory-reading operation completes, this value is stored for the next operation. On
subsequent directory-reading operations, the hash table is automatically sized based on this
value.

On Unix, most processes that read directories open the directory, read each entry se-
quentially, and then close the directory. In a traditional Unix directory, processes can use
the seek system call to obtain the current offset in a directory, then close the directory.
After re-opening the directory, the process can call seek to resume reading from previ-
ously returned offset. Unionfs directories are different from most directories in that it is
only possible to seek to the current offset (programs such as ls require this functionality)
or the beginning of the directory.

Offsets have the further requirement that they are unique, and should also be increas-
ing. The underlying file systems may use all 32-bits of the offset and there are several
underlying directories, so it is not possible to create a simple one-to-one function between
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Unionfs directory offset and the directory offset on a given branch. Unionfs uses an artifi-
cial directory offset that consists of a 12-bit unique identifier, and a 20-bit count of returned
entries.

Special care must be taken to support directory-reading operations over NFS. The NFS
(v2 and v3) protocol is stateless, so there is no concept of an open or closed file. For each
individual directory-reading operation, the in-kernel NFS server re-opens the directory,
seeks to the last offset, reads a number of entries, records the offset, and closes the direc-
tory. To support reading directories over NFS, Unionfs maintains a cache of partially-read
directories’ state indexed by the directory offset and a unique identifier.

When a directory is closed, if there are unread entries, then the current hash table of
names is stored in the in-memory inode structure indexed by the current offset. When
a seek operation is performed on the directory, the 12-bit identifier is used to find the
appropriate structure. The 20-bit offset is also compared and an error is returned if they
do not match. If the partially-read directory state is not used for more than five seconds,
then it is expunged. This prevents state from partially-read directories from consuming
too much kernel memory, but directory-reading operations cannot be resumed after a five
second pause.

3.4 Creating New Objects
A file system creates objects with create, mkdir, symlink, mknod, and link. Although these
operations instantiate different object types, their behavior is fundamentally similar.

Unionfs creates a new object using the negative dentry returned by the lookup oper-
ation. However, a negative dentry may exist because a whiteout is hiding lower-priority
files. If there is no whiteout, then Unionfs instantiates the new object. A file and its white-
out cannot exist in the same branch. If Unionfs is creating a file and finds a whiteout, it
renames the whiteout to the new file. The rename of the whiteout to the file ensures the
atomicity of the operation and avoids any partial failures that could occur during unlink
and create operations.

For mkdir, mknod, and symlink, Unionfs instantiates the new object and then removes
the whiteout. To ensure atomicity, the inode of the directory is locked during this proce-
dure. However, if mkdir succeeds, the newly-created directory merges with any directories
to the right, which were hidden by the removed whiteout. This would break Unix semantics
as a newly created directory is not empty. When a new directory is created after removing
a whiteout, Unionfs creates whiteouts in the newly-created directory for all the files and
subdirectories to the right. To ensure that the on-disk state is consistent in case of a power
or hardware failure, before mounting Unionfs, a high-level fsck can be run. Any objects
that exist along with their whiteout are detected, and can optionally be corrected—just like
when a standard fsck detects inconsistencies.

3.5 Deleting Objects
Unionfs supports two deletion modes: DELETE ALL and DELETE WHITEOUT. We de-
scribe each mode with pseudo-code. We use the following notations:

LX Index of the leftmost branch where X exists
RX Index of the rightmost branch where X exists
X̄ Whiteout entry for X
X [i] lower-level object of X in branch i

Additionally, we omit most error handling to conserve space yet provide the essence of
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each function.
To create a whiteout, we use the function described by the following pseudo-code:

1 create whiteout(X, i)
2 while (i ≥ 1) {
3 if create X̄ succeeds then return
4 i--
5 }

As shown in lines 2–4, Unionfs attempts to create a whiteout starting in branch i. If the
creation of X̄ fails on i, then Unionfs attempts to create X̄ to the left of branch i on branch
i− 1. If the operation fails, then Unionfs continues to attempt the creation of the whiteout,
until it succeeds in a branch to the left of branch i.

The following pseudo-code describes unlink:

1 unionfs_unlink(X)
2 if mode is DELETE_ALL {
3 for i = RX downto LX

4 if X[i] exists then unlink(X[i])
5 }
6 if an error occurred or mode is DELETE_WHITEOUT
7 create whiteout(X, LX)

In the unlink operation for DELETE WHITEOUT mode, Unionfs creates a whiteout X̄

using the create whiteout operation.
For the unlink operation in DELETE ALL mode, Unionfs scans from right to left,

attempting to unlink the file in each branch as shown in the lines 2–5. This behavior is
the most direct translation of a delete operation from a single branch file system. The delete
operation moves in reverse precedence order, from right to left. This ensures that if any
delete operation fails, the user-visible file system does not change. If any error occurred
during the deletions, a whiteout is created by calling the create whiteout procedure.

Whiteouts are essential when Unionfs fails to unlink a file. Failure to delete even one
of the files or directories in the DELETE ALL mode results in exposing the file name even
after a deletion operation. This would contradict Unix semantics, so a whiteout needs to
be created in a branch with a higher priority to mask the files that were not successfully
deleted.

Deleting directories in Unionfs is similar to unlinking files. Unionfs first checks to see if
the directory is empty. If any file exists without a corresponding whiteout, Unionfs returns
a “directory not empty” error (ENOTEMPTY). A helper function, called isempty, returns
true if a directory, D, is empty (i.e., a user would not see any entries except . and ..).

In the DELETE WHITEOUT mode, Unionfs first checks if the directory is empty. If the
directory is empty, then Unionfs creates a whiteout in the leftmost branch where the source
exists to hide the directory. Next, Unionfs removes all whiteouts within the leftmost direc-
tory and the leftmost directory itself. If the operation fails midway, our fsck will detect
and repair any errors.

The deletion operation for directories in DELETE ALL mode is similar to the unlink
operation in this mode. Unionfs first verifies if the directory is empty. A whiteout entry
is created to hide the directory and as a flag for fsck in case the machine crashes. Next,
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Unionfs scans the branches from right to left and attempts to delete the lower-level direc-
tory and any whiteouts within it. If all deletions succeed, then the whiteout is removed.

3.6 Rename
Renaming files is one of the most complex operations in any file system. It becomes even
more complex in Unionfs, which involves renaming multiple source files to multiple desti-
nation files—while still maintaining Unix semantics. Even though a rename operation in
Unionfs may involve multiple operations like rename, unlink, create, copyup, and
whiteout creation, Unionfs provides atomicity and consistency on the whole.

For rename, the source S can exist in one or more branches and the destination D can
exist in zero or more branches. To maintain Unix semantics, rename(S, D) must have
the following two key properties. First, if rename succeeds, then S is renamed to D and
S does not exist. Second, if rename fails, then S remains unchanged; and if D existed
before, then D remains unchanged.

In general, rename is a combination of a link of the source file to the destination file
and an unlink of the source file. So rename has two different behaviors based on the
unlink mode: DELETE WHITEOUT and DELETE ALL (the latter is the default mode).

In the DELETE WHITEOUT mode, Unionfs only renames the leftmost occurrence of the
source and then hides any occurrences to the right with a whiteout. Using the notation of
Section 3.5, the procedure is as follows:

1 unionfs_rename(S,D) { /* DELETE_WHITEOUT */
2 create whiteout for S
3 rename(S[LS], D[LS])
4 for i = LS − 1 downto LD

5 unlink(D[i])
6 }

In line 2, Unionfs creates a whiteout for the source. This makes it appear as if the source
does not exist. In line 3, Unionfs then renames the leftmost source file in its own branch.
Next, Unionfs traverses from right to left, starting in the branch that contains the leftmost
source and ending in the leftmost branch where the destination exists. If the destination
file exists in a branch, then it is removed.

To maintain the two aforementioned key properties of rename, we make the assump-
tion that any lower-level rename operation performed can be undone, though the over-
written file is lost. If any error occurs, we revert the files that we have renamed. This
means that the view that users see does not change, because the leftmost source and des-
tination are preserved. During the Unionfs rename operation, the source and destination
directories are locked, so users cannot view an inconsistent state. However, if an unclean
shutdown occurs, the file system may be in an inconsistent state. Our solution is to create
a temporary state file before the rename operation and then remove it afterward. Our
high-level fsck could then detect and repair any errors.

Unionfs also supports rename in DELETE ALL mode. Using the notation of Sec-
tion 3.5, the procedure for rename in DELETE ALL mode is as follows:

1 union_rename(S,D) {
2 for i = RS downto LS {
3 if (i != LD && S[i] exists)
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4 rename(S[i], D[i])
5 }
6 for i = LS − 1 downto LD + 1
7 unlink(D[i])
8 if (S[LD] exists)
9 rename(S[LD], D[LD]);
10 else if (LD < LS)
11 unlink(D[LD])
12 }

Lines 2–5 rename each source file to the destination, moving from right to left. The if
statement on line 3 skips the branch that contains the leftmost destination (LD), because if
a subsequent lower-level operation were to fail, it is not possible undo the rename in LD.
Lines 6–7 are the second phase: the destination file is removed in branches to the left of the
leftmost source file (LS). This prevents higher-priority destination entries from hiding the
new data. Finally, the branch that contains the leftmost destination file is handled (LD) in
lines 8–11. If the source file exists in the same branch as the leftmost destination (LD), then
the lower-level source is renamed to the destination in that branch. If this last operation
succeeds, then the Unionfs rename operation as a whole succeeds, otherwise the Unionfs
rename operation fails. If the source did not exist in the branch as the leftmost destination
(LD), and the leftmost destination is to the left of the leftmost source (LD < LS), then the
file is removed to prevent it from hiding the new data. Again, if this last operation succeeds,
then the Unionfs operation as a whole succeeds, otherwise the Unionfs operation fails. If
the Unionfs operation returns an error, we revert the renamed files to their original name
on the lower-level. This preserves the property that rename should not change the users’
view if it returns an error.

Unionfs handles read-only file system errors differently than other errors. If a read-write
operation is attempted in a read-only branch, then Unionfs copies up the source file and
attempts to rename it to the destination. To conserve space and provide the essence of our
algorithms without unnecessary complication, we elided these checks from the previous
examples.

3.7 Dynamic Branch Insertion/Deletion
Unionfs supports dynamic insertion and deletion of branches in any order or in any po-
sition. Unionfs’s inodes, dentries, superblock, and open files all have generation num-
bers. Whenever a new branch is added or removed, the superblock’s generation number
is incremented. To check the freshness of objects, the VFS calls the revalidate and
d revalidate methods on inodes and dentries, respectively. If an object’s generation
number does not match the super-block, then the data structures are refreshed from the
lower-level file systems and the generation number is updated. Refreshing objects is similar
to instantiating a new object, but instead updates the existing Unionfs structures, because
other kernel code has references to them. To refresh a dentry or inode we use a special
code path in lookup, and to refresh an open file object we have code that is similar to
open.

In most cases, Unionfs does not permit the removal of an in-use branch (opening a
file increments the branch’s reference count, and closing the file decrements the count).
However, when a process changes its working directory, the VFS does not inform the file
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system. If a branch is removed, but a process is still using it as its working directory, then
a new inode is created with an operations vector filled with functions that return a “stale
file handle” error. This is similar to NFS semantics.

The VFS provides methods for ensuring that both cached dentry and inode objects are
valid before it uses them. However, file objects have no such revalidation method. This
shortcoming is especially acute for stackable file systems because the upper-level file object
is very much like a cache of the lower-level file objects. In Unionfs this becomes important
when a snapshot is taken. If the file is not revalidated, then writes can continue to affect
read-only branches. With file revalidation, Unionfs detects that its branch configuration
has changed and updates the file object.

Our current prototype of file-level revalidation is implemented at the entry point of each
Unionfs file method to allow Unionfs to operate with an unmodified kernel. However,
some simple system calls such as fstat read the file structure without first validating
its contents. Ideally, the VFS should revalidate file objects so that this functionality is
uniformly exposed to all file systems.

3.8 User-Space Utilities
Unionfs provides great flexibility to the user: branches can be added and removed, or their
permissions can be changed. It is essential for the system administrator to be able to man-
age branches easily. For efficiency, all branch management ioctls use branch numbers
for management (e.g., remove branch n). Users, however, find this type of interface cum-
bersome. Additionally, the branch configuration of Unionfs can change continuously. For
example, snapshots may be taken (thereby adding branches) or merged (thereby removing
branches).

Unionfs provides a user-space utility, unionctl that queries and manipulates branches.
Unionfs exposes its current branch configuration through the /proc/mounts file. When
unionctl is invoked, it reads /proc/mounts to identify the union and its branches.
Paths specified on the command line are converted into branch numbers using this infor-
mation. These branch numbers are then passed to the corresponding ioctls.

A simple shell script, snapmerge, merges several Unionfs snapshots. Merging snap-
shots is advantageous as it improves performance by limiting the number of active branches
and saves disk space because only the most recent version of a file is kept. Finally, Unionfs
includes a debugging utility to increase or decrease logging levels, and to force the revali-
dation of all Unionfs objects.

3.9 Split-View Caches
Normally, the OS maintains a single view of the namespace for all users. This limits new
file system functionality that can be made available. For example, in file cloaking, users
only see the files that they have permission to access [Spadavecchia and Zadok 2002].
This improves privacy and prevents users from learning information about files they are
not entitled to access. To implement this functionality in a UID/GID range-mapping NFS
server, caches had to be bypassed. Unionfs can divert any process to an alternative view
of the file system. This functionality can be integrated with an IDS to create a sandboxing
file system. Using a filter provided by an IDS, Unionfs can direct good processes to one
view of the union, and bad processes to another view.

In Linux, each mount point has an associated vfsmount structure. This structure points
to the superblock that is mounted and its root dentry. It is possible for multiple vfsmounts
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to point to a single super-block, but each vfsmount points to only one superblock and root.
When the VFS is performing a lookup operation and comes across a mount point, there
is an associated vfsmount structure. The VFS simply dereferences the root dentry pointer,
and follows it into the mounted file system.

To implement split-view caches, we modified the generic super operations oper-
ations vector to include a new method, select super. Now, when the VFS comes across a
mount point, it invokes select super (if it is defined), which returns the appropriate
root entry to use for this operation. This simple yet powerful new interface was accom-
plished with minimal VFS changes: only eight new lines of core kernel code were added.

Internally, Unionfs has to support multiple root dentries at once. To do this, we create a
parallel Unionfs view that is almost a completely independent file system. The new view
has its own super-block, dentries, and inodes. This creates a parallel cache for each of the
views. However, Unionfs uses the lower-level file systems’ data cache, so the actual data
pages are not duplicated. This improves performance and eliminates data cache coherency
problems. The two views are connected through the super-blocks so that when the original
Unionfs view is unmounted, so are the new views.

Our current prototype uses a hard-coded algorithm for select super, though we plan
to create an interface for modules to register their own select super algorithms.

4. RELATED WORK
We begin by describing the origins of fan-out file systems. Then, we briefly describe four
other representative unification systems. In Section 5 we compare the features offered
by each of these systems with Unionfs. We finally describe snapshotting and sandboxing
systems.

Fan-out File Systems. Rosenthal defined the concept of a fan-out file system, and sug-
gested possible applications such as caching or fail-over [Rosenthal 1990]. However,
Rosenthal only suggested these file systems as possible uses of a versatile fan-out vnode
interface, but did not build any fan-out file systems. Additionally, Rosenthal’s stacking in-
frastructure required an overhaul of the VFS. The Ficus Replicated File System is a multi-
layer stackable fan-out file system that supports replication [Guy et al. 1990; Heidemann
and Popek 1994]. Ficus has two layers, a physical layer that manages a single replica and
a logical layer that manages several Ficus physical layer replicas. Ficus uses the existing
vnode interface, but overloads certain operations (e.g., looking up a special name is used to
signal a file open). Ficus was developed as a stackable layer, but it does not make full use
of the naming routines providing by existing file systems. Ficus stores its own directory
information within normal files, which adds complexity to Ficus itself.

In Unionfs, we have implemented an n-way fan-out file system for merging the contents
of directories using existing VFS interfaces.

Plan 9. Plan 9, developed by Bell Labs, is a general-purpose distributed computing
environment that can connect different machines, file servers, and networks [AT&T Bell
Laboratories 1995]. Resources in the network are treated as files, each of which belongs to
a particular namespace. A namespace is a mapping associated with every directory or file
name. Plan 9 offers a binding service that enables multiple directories to be grouped under
a common namespace. This is called a union directory. A directory can either be added at
the top or at the bottom of the union directory, or it can replace all the existing members in
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the structure. In case of duplicate file instances, the occurrence closest to the top is chosen
for modification from the list of member directories.

3-D File System (3DFS). 3DFS was developed by AT&T Bell Labs, primarily for source
code management [Korn and Krell 1990]. It maintains a per-process table that contains
directories and a location in the file system that the directories overlay. This technique
is called viewpathing, and it presents a view of directories stacked over one another. In
addition to current directory and parent directory navigation, 3DFS introduces a special
file name “...” that denotes a third dimension of the file system and allows navigation
across the directory stack. 3DFS is implemented as user-level libraries, which often results
in poor performance [Zadok and Nieh 2000]; atomicity guarantees also become difficult as
directory locking is not possible.

TFS. The Translucent File System (TFS) was released in SunOS 4.1 in 1989 [Hendricks
1990]. It provides a viewpathing solution like 3DFS. However, TFS is an improvement
over 3DFS as it better adheres to Unix semantics when deleting a file. TFS transparently
creates a whiteout when deleting a file. All directories except the topmost are read-only.
During mount time, TFS creates a file called .tfs_info in each mounted directory,
which keeps sequence information about the next mounted directory and a list of whiteouts
in that directory. Whenever the user attempts to modify files in the read-only directories,
the file and its parent directories are copied to the topmost directory. TFS is implemented
as a user-level NFS server that services all directory operations like lookup, create,
and unlink. TFS has a kernel-level component that handles data operations like read
and write on individual files. TFS was dropped from later releases of SunOS. Today, the
Berkeley Automounter Amd [Pendry et al. 2003] supports a TFS-like mode that unifies
directories using a symbolic-link shadow tree (symlinks point to the first occurrence of a
duplicate file).

4.4BSD Union Mounts. Union Mounts, implemented on 4.4BSD-Lite [Pendry and McKu-
sick 1995], merge directories and their trees to provide a unified view. This structure,
called the union stack, permits directories to be dynamically added either to the top or to
the bottom of the view. Every lookup operation in a lower layer creates a corresponding
directory tree in the upper layer called a shadow directory. This clutters the upper-layer
directory and converts the read-only lookup into a read-write operation. A request to
modify a file in the lower layers results in copying the file into its corresponding shadow
directory. The copied file inherits the permissions of the original file, except that the owner
of the file is the user who mounted the file system. A delete operation creates a whiteout
to mask all the occurrences of the file in the lower layers. To avoid consumption of inodes,
Union Mounts make a special directory entry for a whiteout without allocating an inode.
Whiteouts are not allocated inodes in order to save resources, but (ironically) shadow di-
rectories are created on every lookup operation, consuming inodes unnecessarily.

Snapshotting. There are several commercially and freely available snapshotting sys-
tems, such as FFS with SoftUpdates and WAFL [McKusick and Ganger 1999; Hitz et al.
1994; Peterson and Burns 2005]. These systems perform copy-on-write when blocks
change. Most of these systems require modifications to existing file systems and the block
layer. Clotho is a departure from most snapshotting systems in that it requires only block
layer modifications [Flouris and Bilas 2004]. Snapshotting with Unionfs is more flexible
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and portable than previous systems because it can stack on any existing file system (e.g.,
Ext2 or NFS). Because Unionfs is stackable, snapshots could also be created per file or per
file type.

Sandboxing. Sandboxing is a collection of techniques to isolate one process from the
others on a machine. The chroot system call restricts the namespace operations of some
processes to a subset of the namespace. Jails extend chroot to allow partitioning of
networking and process control subsystems [Kamp and Watson 2000]. Another form of
sandboxing is to monitor system calls, and if they deviate from a policy, prevent them from
being executed [Fraser et al. 1999].

5. FEATURE COMPARISON
In this section we present a comparison of our Unionfs with the four most representative
comparable systems: Plan 9 union directories, 3DFS, TFS, and BSD Union Mounts. We
identified the following eighteen features and metrics of these systems, and we summarized
them in Table I:
(1) Unix semantics: Recursive unification: 3DFS, TFS, BSD Union Mounts, and Unionfs

present a merged view of directories at every level. Plan 9 merges only the top level
directories and not their subdirectories.

(2) Unix semantics: Duplicate elimination level: 3DFS, TFS, and BSD Union Mounts
eliminate duplicate names at the user level, whereas Unionfs eliminates duplicates at
the kernel level. Plan 9 union directories do not eliminate duplicate names. Elimi-
nation at the kernel level means that Unionfs can be used with multiple C libraries,
statically linked applications, and exported to any type of NFS client.

(3) Unix semantics: Deleting objects: TFS, BSD Union Mounts, and Unionfs adhere to
Unix semantics by ensuring that a successful deletion does not expose objects in lower
layers. However, Plan 9 and 3DFS delete the object only in the highest-priority layer,
possibly exposing duplicate objects.

(4) Unix semantics: Permission preservation on copyup: All file systems except Unionfs
do not fully adhere to Unix semantics. BSD Union Mounts make the user who mounted
the Union the owner of the copied-up file, whereas in other systems a copied-up file
is owned by the current user. Unionfs, by default, preserves the owner on a copyup.
Unionfs supports other modes that change ownership on a copyup as described in
Section 2.

(5) Unix semantics: Unique and persistent inode numbers: Only Unionfs supports
unique and persistent inodes during lookup and directory reading. This allows ap-
plications to identify a file reliably using its device and inode numbers. Persistent
inode numbers also make it possible for NFS file handles to survive reboots.

(6) Multiple writable branches: Unionfs allows files to be directly modified in any
branch. Unionfs attempts to avoid frequent copyups that occur in other systems and
avoids shadow directory creation that clutters the highest-priority branch. This im-
proves performance. Plan 9 union directories can have multiple writable components,
but Plan 9 does not perform recursive unification, so only the top-level directory sup-
ports this feature. Other systems only allow the leftmost branch to be writable.

(7) Dynamic insertion and removal of the highest priority branch: All systems except
TFS support removal of the highest-priority branch. BSD Union Mounts can only
remove branches in the reverse order that they were mounted.
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Feature Plan 9 3DFS TFS 4.4BSD Unionfs
1 Unix semantics: Recursive unification 4 4 4 4

2 Unix semantics: Duplicate elimination
level

User Library User NFS Server C Library Kernel

3 Unix semantics: Deleting objects 4 4 4

4 Unix semantics: Permission preservation
on copyup

4a

5 Unix semantics: Unique and persistent
inode numbers

4

6 Multiple writable branches 4 4

7 Dynamic insertion & removal of the
highest priority branch

4 4 4 4

8 Dynamic insertion & removal of any
branch

4

9 No file system type restrictions 4 4 4 b 4

10 Creating shadow directories 4c 4 4 4c

11 Copyup-on-write 4 4 4 4d

12 Whiteout support 4e 4 4 4

13 Snapshot support 4

14 Sandbox support 4

15 Implementation technique VFS User User NFS Server Kernel FS Kernel FS
(stack) Library + Kernel helper (stack) (fan-out)

16 Operating systems supported Plan 9 Manyf SunOS 4.1 4.4BSD Linuxg

17 Total LoC 6,247h 16,078 16,613 3,997 11,853
18 Customized functionality 4

Table I. Feature Comparison. A check mark indicates that the feature is supported, otherwise it is not.
a Through a mount-time option, a copied-up file’s mode can be that of the original owner, current user, or the file
system mounter.
b BSD Union Mounts allow only an FFS derivative to be the topmost layer.
c Lazy creation of shadow directories.
d Unionfs performs copyup only in case of a read-only branch.
e 3DFS uses whiteouts only if explicitly specified.
f 3DFS supports many architectures: BSD, HP, IBM, Linux, SGI, Solaris, Cygwin, etc.
g Unionfs runs on Linux 2.4 and 2.6, but it is based on stackable templates, which are available on three systems:
Linux, BSD, and Solaris.
h Since Plan 9’s union directories are integrated into the VFS, the LoC metric is based on an estimate of all
related code in the VFS.

(8) Dynamic insertion and removal of any branch: Only Unionfs can dynamically in-
sert or remove a branch anywhere in the union.

(9) No file system type restrictions: BSD Union Mounts require the topmost layer to be
an FFS derivative which supports on-disk whiteout directory entries. Other systems
including Unionfs have no such restriction.

(10) Creating shadow directories: 3DFS and TFS create shadow directories on write op-
erations in read-only branches. BSD Union Mounts create shadow directories in the
leftmost branch even on lookup, to prepare for a possible copyup operation; this,
however, clutters the highest-priority branch with unnecessary directories, and turns
a read-only operation into a read-write operation. Unionfs creates shadow directo-
ries only on write operations and on error conditions such as ‘read-only file system”
(EROFS).
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(11) Copyup-on-write: Plan 9 union directories do not support copyup. 3DFS, TFS, BSD
Union Mounts, and Unionfs can copy a file from a read-only branch to a higher-priority
writable branch.

(12) Whiteout support: Plan 9 does not support whiteouts. 3DFS creates whiteouts only
if manually specified by the user. BSD Union Mounts, TFS, and Unionfs create white-
outs transparently.

(13) Snapshot support: Only Unionfs is suitable for snapshotting, because it supports
file-object revalidation, unifies recursively, adheres to Unix deletion semantics, al-
lows dynamic insertion of branches, lazily creates shadow directories, and preserves
attributes on copy-up.

(14) Sandbox support: Only Unionfs supports sandboxing processes.

(15) Implementation technique: Plan 9 union directories are built into the VFS layer.
3DFS is implemented as a user-level library; whereas it requires no kernel changes,
applications must be linked with the library to work. Such user-level implementations
often suffer from poor performance. TFS is a user-space localhost NFS server that
works with standard NFS clients. Running in user-space increases portability, but
decreases performance. TFS has a kernel level component for performance, but that
reduces its portability. BSD Union Mounts is a kernel-level stackable file system with
a linear stack, whereas Unionfs is a kernel-level stackable file system with an n-way
fan-out. Stackable file systems have better performance than user-space file systems
and are easier to develop than disk-based or network-based file systems [Zadok and
Nieh 2000].

(16) Operating systems supported: 3DFS comes with a customized C library for several
systems: BSD, HPUX, AIX, Linux, IRIX, Solaris, and Cygwin. Plan 9 is an operating
system by itself. TFS was supported on SunOS 4.1. BSD Union Mounts are imple-
mented on 4.4BSD and current derivatives (e.g., FreeBSD). Unionfs runs on Linux,
but since it is based on stacking templates, it can easily be ported to Solaris and BSD.

(17) Total LoC: The number of Lines of Code (LoC) in the file system is a good mea-
sure of maintainability, complexity, and the amount of initial effort required to write
the system. Plan 9 union directories are built into the VFS; therefore its LoC metric
is an approximate estimate based on the most related code in the VFS. 3DFS has a
relatively high LoC count because it comes with its own set of C library functions.
TFS’s LoC metric accounts for both its user-level NFS server and kernel component.
The LoC metric for Unionfs (snapshot 061205-0016) and BSD Union Mounts, both
implemented in the kernel, is considerably less than the user-level implementations.
Unionfs has a larger LoC than BSD Union Mounts because it supports more features.
The Unionfs LoC includes 804 lines of user-space management utilities.

(18) Customized functionality: Unionfs has a flexible design that provides several modes
of operation using mount-time options. For example, Unionfs allows the users to
choose the mode and the permissions of the copied-up files, with COPYUP OWNER,
COPYUP CONST, and COPYUP CURRENT as described in Section 2. Unionfs also
provides two modes for deleting objects: DELETE ALL and DELETE WHITEOUT as
described in Section 3.5.
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6. PERFORMANCE EVALUATION
We evaluate the performance of our system by executing various general-purpose bench-
marks and micro-benchmarks. Previous unification file systems are either considerably
older or run on different operating systems. Therefore, we do not compare Unionfs’s per-
formance with other systems.

We conducted all tests on a 1.7GHz Pentium-IV with 1152MB of RAM. The machine
ran Fedora Core 3 with all updates as of May 17, 2005. We used Unionfs snapshot
061205-0016. All experiments were located on a dedicated 250GB Maxtor IDE disk.
To overcome the ZCAV effect, the test partition was located on the outer cylinders of the
disk and was just large enough to accommodate the test data [Ellard and Seltzer 2003].
We chose Ext2 as the base file system because it is widely used and well-tested. To en-
sure a cold cache, we unmounted the underlying file system between each iteration of a
benchmark. For all tests, we computed the 95% confidence intervals for the mean elapsed,
system, and user time using the Student-t distribution. In each case, the half-widths of
the intervals for elapsed and system time were less than 5% of the mean. For some ex-
periments, user time was a small component of the overall experiment, in these cases the
half-width is either below 5% of the mean, or less than 10ms (the accuracy at which user
time is measured).

6.1 Configurations
We used the following two operating modes for our tests:

. DALL uses the DELETE ALL mount-time option that deletes each occurrence of a file
or a directory.

. DWHT uses the DELETE WHITEOUT mount time option that creates whiteouts on a
call to rename, unlink, or rmdir.
We used the following two data distribution methods:

. DIST distributes files and directories evenly across branches with no duplicate files.
If two files in the same directory are distributed to different branches, then their parent
directory is duplicated.

. DUP replicates each file and directory to every branch.
We conducted tests for all combinations of the aforementioned parameters for one, two,

four, eight, and sixteen branches. We selected these branch numbers in order to study
the performance of the system under different load conditions; one-branch tests were con-
ducted to ensure that Unionfs did not have a high performance overhead compared with
similar tests on Ext2; sixteen-branch tests, on the other hand, test the scalability of the sys-
tem under high workloads; intermediate configurations help examine Unionfs performance
on moderate workloads.

6.2 General Purpose Benchmarks
We chose two representative general-purpose workloads: (1) Postmark, an I/O-intensive
benchmark [Katcher 1997], and (2) a CPU-intensive compile benchmark, building the
OpenSSH package [OpenBSD 2005]. To provide comparable results, we selected the num-
ber of Ext2 directories based on the number of underlying Unionfs branches.

Postmark focuses on stressing the file system by performing a series of file system op-
erations such as directory look ups, creations, and deletions on small files. A large number
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of small files is common in electronic mail and news servers where multiple users are ran-
domly modifying small files. We configured Postmark to create 20,000 files and perform
200,000 transactions; these are commonly recommended parameters [Katcher 1997]. We
used 200 subdirectories to prevent linear directory look ups from dominating the results.

The OpenSSH build (version 4.0p1) contains 74,259 lines of code. It performs several
hundred small configuration tests, and then it builds 155 object files, one library, eleven
binaries, and four scripts. This benchmark contains a fair mix of file system operations,
representing a typical performance impact for users.
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Fig. 2. Postmark: 20,000 files and 200,000 transactions.

Figure 2 shows the elapsed and system time for Postmark in the DWHT and DALL
modes. The results for DALL stayed relatively constant as the number of branches in-
creased, demonstrating Unionfs’s scalability. The elapsed time overheads for DALL are in
the range of 8.5–15.9% above that of Ext2. DWHT, however, has a higher elapsed time
overhead of 24.4% for a single branch. This overhead is higher than DALL for two rea-
sons. First, whiteout creation requires two steps: renaming the file and then truncating it.
Second, all directory operations consume more time, because look ups take longer as the
number of directory entries increases. Interestingly, as the number of branches increases,
the overhead of DWHT actually decreases. For two branches, the overhead is 9.2%, and
for sixteen branches, the results are actually faster than Ext2 by 14%. This result was un-
expected, so we investigated it further. With DWHT the time taken to write data to disk
decreases significantly. With sixteen branches, the number of sectors written decreased by
46.9%, the number of individual write operations decreased by 45.5%, and the total amount
of time spent writing decreased by 52.9%. We verified that our code’s performance char-
acteristics were not anomalous by modifying Postmark to simulate the whiteout deletion
mode directly on Ext2.

To better understand this behavior, we profiled Postmark using a tool that we developed
called FSprof [Joukov et al. 2004]. FSprof instruments file systems to count the number
of calls to each operation and their total latency. The most striking differences between the
profiles was that the delete inode operation took 72% less time on DWHT than Ext2;
and the writepages also decreased by 53%. The delete inode operation was signif-
icantly faster because with DWHT no inodes are deallocated during the transactions phase
of Postmark (they are converted to whiteouts instead). After the transactions phase, Post-
mark deletes all remaining files and directories. While deleting these directories, DWHT
removes any whiteout entries in them. Because all of the whiteouts are deleted at once,
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the disk blocks containing the inodes only need to be written once because of improved
temporal locality.

The behavior of writepages is a bit more complicated. The number of calls to
writepages increased, but the time spent decreased. This means that each individual
writepage call must have spent less time. The bulk of time in a writepage opera-
tion is spent positioning the disk head, so this would indicate that the files within DWHT
have better locality than in Ext2. To verify this theory we modified Postmark to record
the Ext2 inode numbers of files that were created by Ext2 and Unionfs. Using the Ext2
inode number, we can determine the cylinder group that the file was allocated in. We then
computed the number of cylinder groups that n consecutive operations spanned. If fewer
cylinder groups are used, then better locality is exhibited. Figure 3 compares the number of
consecutive operations, with the mean number of cylinder groups accessed for DWHT and
Ext2. For 80 or more consecutive operations, DWHT used fewer cylinder groups. For 1,000
operations, Ext2 used 50 cylinder groups, whereas DWHT used only 31. Ext2 attempts to
create new files in the same cylinder group as their parent directory. Because Postmark
creates many files, they do not all fit within a cylinder group and are spread across the
disk. After a file is deleted, however, its place can be taken by a new file. In DWHT, on the
other hand, files are not deleted, so the full cylinder group cannot be reused. This forces
Ext2 to allocate all of the new files in the same cylinder group, rather than going back to a
previously full cylinder group, thereby improving locality.
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Fig. 3. Cylinder groups accessed by n consecutive operations.

The results for all of our OpenSSH compile benchmarks have overheads ranging from
0.2–1.5% for elapsed time and 1.1–6.2% for system time. Postmark and the OpenSSH
compile both show that most users are unlikely to notice a performance degradation when
using Unionfs.

Snapshots. We also ran OpenSSH and Postmark while taking snapshots every 60, 30,
and 15 seconds. OpenSSH had an elapsed time overhead of 2.4–3.3% over Ext2 for all
intervals. On average, 2.0, 4.0, and 7.1 snapshots were taken for intervals of 60, 30, and 15
seconds, respectively. This demonstrates that Unionfs efficiently performs snapshots for
user-like workloads. Table II shows the Postmark results. Elapsed time overheads ranged
from 34.4–79.8%. Postmark is a more I/O-intensive workload, and therefore each snap-
shot causes more data to be copied to the highest-priority branch. Additionally, because
each snapshot increases the total number of files, directory operations such as create,
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unlink, and lookup take more time. This suggests that merging snapshots periodically
would be beneficial.

Interval(s) Snapshots Overhead
15 12.4 79.8%
30 5.1 42.9%
60 3 34.4%

Table II. Postmark with snapshots on Unionfs. Elapsed time overhead is compared to Ext2.

6.3 Micro-Benchmarks
Unionfs modifies basic file system operations like lookup, readdir, unlink, and
rmdir. We conducted the following three micro-benchmarks on Unionfs to evaluate the
overhead of these operations:

—STAT evaluates the overhead of lookup by running stat on each file and directory.
—READDIR reads all the directories using readdir.
—UNLINK evaluates the overhead of the unlink and rmdir operations by unlinking

each file in the system (if unlink returns EISDIR, then we use rmdir).

For all of the micro-benchmarks, we used a pre-computed list of files and directories.
This avoids using readdir and stat to determine what files or directories to operate
on.

We used 100 copies of the OpenSSH 4.0p1 distribution as our data set. The data set
had a total of 1,300 directories with 40,000 files that took 472MB of disk space. For
the distributed data set, the number of files remained constant, but there were duplicated
directories. For the duplicated set, each branch had a copy of all files and directories.

STAT. Figure 4 shows the benchmark results for STAT. For a single branch, Unionfs
has an overhead of 33.7% over Ext2. This is because Unionfs must look up both the file
and its whiteout. A Unionfs lookup operation with a DIST distribution scans all the
branches from left to right until it finds the file. So, there is an expected linear increase
in the elapsed time by a factor of 2.3 for two branches over a single branch, 4.0 for four
branches, 6.8 for eight branches, and 10.8 for sixteen branches. On the other hand, for a
DUP data distribution, the overhead for two branches over a single branch is a factor of 2.1,
for four branches the overhead is a factor of 7.5, for eight branches the factor of 17.3 times,
and for sixteen branches a factor of 32.7. This overhead is mainly caused by look ups on
directories. Indeed, if a single directory of 10,000 files is used instead of the OpenSSH
data set, then the overhead is 1.2% for two branches and it increases to only 23.9% for
sixteen branches, because the lookup procedure terminates after the first branch for files.

Most of this overhead is I/O. With a cold cache, the benchmark took from 5.9–213 sec-
onds. With a warm cache, the benchmark took 0.2 seconds for Ext2, and 0.3–1.6 seconds
for Unionfs. We believe that the warm-cache results are closer to most user workloads,
because most files are accessed multiple times [Roselli et al. 2000].

READDIR. Figure 5 shows the benchmark results for READDIR. For a single branch,
Unionfs has an overhead of 38.7% over Ext2. This overhead is due to the additional state
that must be maintained, and additional layers of function calls. A Unionfs readdir
with a DIST distribution scans all the branches from left to right, listing the contents of
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Fig. 4. STAT results.

the directories. Because each underlying directory contains fewer files, it examines the
same number of entries as Ext2 (if you ignore duplicated directories), but the disk head
must still seek to read each of the n small directories. So, again there is an expected linear
increase in the elapsed time by a factor of 2.5 for two branches over a single branch, 4.3
for four branches, 6.5 for eight branches, and 10.4 for sixteen branches. Similary, for a
DUP data distribution, Unionfs must physically read n directories from the disk for an n

branch configuration. Additionally, the directories will be as large as before and duplicate
elimination must be performed. For a single branch, the overhead is 20.8%. The overhead
for two branches over a single branch is a factor of 3.7, 7.4 for four branches, 16.1 for eight
branches, and 29.5 for sixteen branches.
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Fig. 5. READDIR results.

Most of this overhead is I/O. Indeed, to perform the test on sixteen duplicate copies of
the data set on Ext2 took 14.0 times as long as to read a single copy. For a sixteen-branch
Unionfs configuration with duplicated data, this translates into an overhead of 124.6%
over Ext2 with sixteen duplicated data sets. With a cold cache, the benchmark took 5.7–
203 seconds. With a warm cache, the benchmark completed in 0.06 seconds for Ext2, and
0.10–1.45 seconds for Unionfs. We believe that the warm cache performance is closer to
user workloads, because directories are usually accessed multiple times.

UNLINK Benchmark. Figure 6 shows the benchmark results for our UNLINK micro-
benchmark. With a DALL configuration on a distributed data set, the mean elapsed time in-
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creases by 5.0%, from 12.51 seconds for Ext2 to 13.15 seconds for a single branch Unionfs.
This increase is due to a system time increase from 0.06 seconds to 3.93 seconds. When
additional branches are added, the elapsed time increases for three reasons. First, lookup
operations must be performed in branches to the right of the file’s first occurrence (which
requires reading those entire directories). Second, before removing a directory, Unionfs
must read the directory in each branch to ensure that it is empty. Third, directories must be
deleted in multiple branches. A union with two branches had a 74% elapsed time overhead
when compared to a single branch; four branches were slower by a factor of 2.5; eight
branches were slower by a factor of 4.8, and sixteen branches were slower by a factor of
7.3.
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Fig. 6. UNLINK results.

With a DWHT configuration, the mean elapsed time increases by 12.32%, from 12.51
seconds to 14.06 seconds; again primarily because of an increase in system time. The
reason that DWHT took more time than DALL for this configuration is that it is implemented
as a rename, which consists of two distinct directory operations (adding an entry for
the new name and removing the old name). Because DALL only performs one directory
operation, it uses less time. For additional branches, the elapsed time increases at a slower
rate than for DALL. This is because directories do not have to be deleted in all branches,
and lookup does not need to be called in lower-priority branches. Overheads over a single
branch are 43% for two branches, a factor of 2.3 for four branches, a factor of 4.8 for eight
branches, and a factor of 6.9 for sixteen branches. The overhead increases as the number
of branches increases because readdir is called to verify that the directory is logically
empty (i.e., every lower-level entry has a corresponding higher-priority whiteout).

For a DUP distribution with DALL, the overhead for additional branches is greater than
for the DIST data distribution. The increase is caused by three factors. First, to determine if
a directory is empty, more entries need to be read. Second, before removing a file, Unionfs
must perform lookup operations in all of branches except the leftmost. Third, to delete
a single file, unlink must be performed in each branch. For two branches, the elapsed
time increases by a factor of 2.5. Most of this overhead, 91%, was caused by additional
I/O. For four branches the overhead is a factor of 5.7, for eight branches the overhead is
a factor of 13.5, and for sixteen branches, the overhead is a factor of 31.9. The reason
for such a high overhead for sixteen branches is that Unionfs must actually perform many
operations, including more I/O-bound operations. We constructed a similar benchmark for
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Ext2 that removes two, four, eight, and sixteen copies of our data set. The overhead of
Unionfs compared to this Ext2 test was 47–83% for 2–16 branches.

With a DWHT configuration, the mean elapsed time increases by 45%, from 12.51 sec-
onds to 18.21 seconds. The overhead over a single branch is 70.9% for two branches, a
factor of 3.2 for four branches, a factor of 6.5 for eight branches, and a factor of 12.1 for
sixteen branches. The overhead is less than for DALL because lookup and directory op-
erations are not required in lower-priority branches. As the number of branches increases,
overhead increases because more directory-reading operations need to be performed to ver-
ify that directories are logically empty. When compared to removing the files on Ext2, the
overhead is 22.7% for two branches. For four or more branches, DWHT is faster than delet-
ing the files on Ext2, because fewer namespace operations are required. The improvement
is 12.6% for four branches, 15.2% for eight branches, and 26.8% for sixteen branches.

The aforementioned benchmarks helped us evaluate the performance of all features that
Unionfs provides. Our general-benchmarks show that Unionfs has small user-visible over-
heads, even for an I/O-intensive benchmark like Postmark. Our micro-benchmarks bring
out the worst case Unionfs operations. We show that Unionfs has acceptable overheads,
and for particularly expensive operations illustrate that performing the same underlying
operations on multiple copies of the data with a plain Ext2 file system is also expensive.

7. CONCLUSIONS
We have designed, implemented, and released Unionfs, a namespace unification file sys-
tem that is both versatile and adheres to Unix semantics. Our performance evaluation
shows that Unionfs has a small overhead for typical user-like workloads, and our micro-
benchmarks show that Unionfs has acceptable worst-case performance.

Unionfs is the first implementation of an n-way stackable fan-out unification file sys-
tem. All underlying branches are directly accessed by Unionfs which allows it to be more
intelligent and efficient. Unionfs supports a mix of read-only and read-write branches, fea-
tures not previously supported on any unification file system. Unionfs also supports the
dynamic addition and deletion of any branch of any precedence, whereas previous systems
only allowed the highest or lowest precedence branch to be added or removed. Unionfs’s
flexibility and VFS enhancements allow it to be used for new applications, such as snaph-
sotting and sandboxing, where namespace unification systems have not previously been
applied.

Unionfs has been directly downloaded by thousands users in the last six months, and
is widely used in eighteen different Linux distributions, and because of this we have been
able to identify and solve previously unidentified problems. For example, Unionfs has
efficient in-kernel duplicate elimination with support for NFS. Unionfs also has support
for unique and persistent inode numbers with a space overhead less than one quarter of a
percent.

Even though operations may fail on any one of the underlying branches, Unionfs main-
tains Unix semantics. For deletion operations, Unionfs operates from low precedence to
high precedence branches in order to leave the user-level view unmodified until the opera-
tion is guaranteed to succeed. We carefully ordered operations to return success or failure
to the user atomically, and leave the file system in a consistent state.
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7.1 Future Work
For operations that manipulate the namespace, Unionfs currently uses O(Σn

i=1
ti) algo-

rithms, where ti is time it takes to complete the operation on branch i and n is the number
of branches, because operations are performed serially on each branch. With only a hand-
ful of branches, this performs reasonably well (as demonstrated in Section 6), but as the
number of branches increases performance begins to suffer. This is especially acute when
branches are added automatically (e.g., in a snapshotting system). We plan to create a
parallelized Unionfs, in which a pool of worker threads will be available to perform opera-
tions. Unionfs will begin execution of all operations, and then process the results after they
complete. This scheme will allow the individual I/O operations to be interleaved, resulting
in performance in O(max(t0, . . . , tn)). This could be particularly useful if the underlying
branches use physically different disks. For read-only operations, like lookup, all of the
worker threads can be started at once. However, for some operations like unlink, there
will be a small number of synchronization points at which the next operation depends on
the result of the previous operation (e.g, a whiteout should be created only if there are
read-only–file-system errors).

Unionfs maintains handles to lower-level file system objects in the private data of its
in-kernel structures. Currently, accessing the underlying file systems causes cache inco-
herences with Unionfs because objects may cease to exist or be inserted without Unionfs’s
knowledge. Our revalidation method refreshes Unionfs’s caches when branches are added
or removed. We plan to extend the revalidation method to verify that an object (and its
parent’s), are kept up-to-date. If a lower-level object (or its parent) changes, then we will
refresh the Unionfs cache.

For operations on file data, Unionfs is completely bypassed and the lower-level file sys-
tem is consulted. This method of accessing data yields performance equal to that of the to
the lower-level file system for memory-mapped operations, and performance quite close
to the lower-level file system for standard read and write operations. Additionally,
because data is only cached at the lower-level there are fewer cache coherency issues. Un-
fortunately, Unionfs is not notified of memory-mapped writes in this architecture, there-
fore writable shared mappings can be changed after a snapshot. We will improve Unionfs
to use its own set of memory-mapping operations, so that it is notified of all memory-
mapped writes. To ensure that performance is not hurt, we will use a page flipping tech-
nique so that caching is only performed on the Unionfs level. There are also two imple-
mentation details that motivate us to move to using our own memory-mapped operations.
First, the /proc file system on Linux uses the memory-mapped region of the current ex-
ecutable to return its pathname, so the lower-level path name is returned when reading
from /proc/self/exe. Second, the sendfile system call requires a matching file
structure and address space structure. As Unionfs presently has no address space structure,
we cannot properly implement sendfile, which is required for loop device mounts and
improves performance for Web and NFS servers.

Unionfs’s persistent inode maps provide the basis for NFS file handles that will survive
remounts and reboots. To support persistent NFS file handles, Unionfs must be modified to
read the lower-level inode in our own read inode operation, and to find the parent of a
given directory. Reading the lower-level inode is a relatively straightforward change. De-
termining the parent of a directory is more difficult, because each Unionfs directory maps
to several lower-level directories. Unionfs can obtain a properly initialized and connected
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dentry from an inode using the following method. The basic idea is to walk from a given
inode up to the Unionfs root, and then walk back down to the proper dentry. First, using
the Unionfs inode number and the forward map, Unionfs can get the lower-level inode.
Given this inode, Unionfs can look up .. to obtain the lower-level parent. We can then use
the reverse map to obtain the Unionfs inode number. This process is repeated until we find
the root Unionfs inode. After we obtain the root Unionfs inode, we can walk back down
the path to populate each directory entry by reading the parent directory to find the child
entries (this type of search is similar to how the generic Linux export operations).

Finally, there are two features that we have described in our design, but have not yet
implemented: (1) a fsck program for Unionfs, (2) creating a state file during rename
for fsck. We plan to implement these features in the future.

ACKNOWLEDGMENTS
This work was partially made possible by an NSF CAREER award EIA-0133589, NSF
Trusted Computing Award CCR-0310493, and HP/Intel gifts numbers 87128 and 88415.1.

Software and documentation are available from http://unionfs.filesystems.org. The source
code for all benchmarks and the scripts we used in the evaluation section are available at
www.fsl.cs.sunysb.edu/˜cwright/unionfs-tos/.

REFERENCES
AT&T Bell Laboratories 1995. Plan 9 – Programmer’s Manual. AT&T Bell Laboratories.
ELLARD, D. AND SELTZER, M. 2003. NFS Tricks and Benchmarking Traps. In Proceedings of the

Annual USENIX Technical Conference, FREENIX Track. San Antonio, TX, 101–114.
FLOURIS, M. D. AND BILAS, A. 2004. Clotho: Transparent Data Versioning at the Block I/O Level.

In Proceedings of the 12th NASA Goddard, 21st IEEE Conference on Mass Storage Systems and
Technologies (MSST 2004). College Park, Maryland, 315–328.

FRASER, T., BADGER, L., AND FELDMAN, M. 1999. Hardening COTS Software with Generic
Software Wrappers. In Proceedings of the 1999 IEEE Symposium on Security and Privacy. 2–16.

GUY, R. G., HEIDEMANN, J. S., MAK, W., PAGE JR., T. W., POPEK, G. J., AND ROTHMEIER, D.
1990. Implementation of the Ficus replicated file system. In Proceedings of the Summer USENIX
Technical Conference. 63–71.

HEIDEMANN, J. S. AND POPEK, G. J. 1994. File system development with stackable layers. ACM
Transactions on Computer Systems 12, 1 (February), 58–89.

HENDRICKS, D. 1990. A Filesystem For Software Development. In Proceedings of the USENIX
Summer Conference. Anaheim, CA, 333–340.

HITZ, D., LAU, J., AND MALCOLM, M. 1994. File System Design for an NFS File Server Appli-
ance. In Proceedings of the USENIX Winter Technical Conference. San Francisco, CA, 235–245.

JOUKOV, N., WRIGHT, C. P., AND ZADOK, E. 2004. FSprof: An In-Kernel File System Opera-
tions Profiler. Tech. Rep. FSL-04-06, Computer Science Department, Stony Brook University.
November. www.fsl.cs.sunysb.edu/docs/aggregate˙stats-tr/aggregate˙stats.pdf.

KAMP, P. H. AND WATSON, R. N. M. 2000. Jails: Confining the omnipotent root. In Proceed-
ings of the Second International System Administration and Networking Conference (SANE2000).
Maastricht, The Netherlands.

KATCHER, J. 1997. PostMark: A New Filesystem Benchmark. Tech. Rep. TR3022, Network Ap-
pliance. www.netapp.com/tech˙library/3022.html.

KORN, D. G. AND KRELL, E. 1990. A New Dimension for the Unix File System. Software-Practice
and Experience, 19–34.

MCKUSICK, M. K. AND GANGER, G. R. 1999. Soft Updates: A technique for eliminating most
synchronous writes in the fast filesystem. In Proceedings of the Annual USENIX Technical Con-
ference, FREENIX Track. Monterey, CA, 1–18.

ACM Transactions on Storage ACM, Vol. 1, No. 4, Novemeber 2005.



Versatility and Unix Semantics in Namespace Unification · 29

OPENBSD. 2005. OpenSSH. www.openssh.org.
PENDRY, J. S. AND MCKUSICK, M. K. 1995. Union mounts in 4.4BSD-Lite. In Proceedings of

the USENIX Technical Conference on UNIX and Advanced Computing Systems. 25–33.
PENDRY, J. S., WILLIAMS, N., AND ZADOK, E. 2003. Am-utils User Manual, 6.1b3 ed. www.

am-utils.org.
PETERSON, Z. AND BURNS, R. 2005. Ext3cow: a time-shifting file system for regulatory compli-

ance. Trans. Storage 1, 2, 190–212.
ROSELLI, D., LORCH, J. R., AND ANDERSON, T. E. 2000. A Comparison of File System Work-

loads. In Proc. of the Annual USENIX Technical Conference. San Diego, CA, 41–54.
ROSENTHAL, D. S. H. 1990. Evolving the Vnode interface. In Proceedings of the Summer USENIX

Technical Conference. 107–18.
SPADAVECCHIA, J. AND ZADOK, E. 2002. Enhancing NFS Cross-Administrative Domain Access.

In Proceedings of the Annual USENIX Technical Conference, FREENIX Track. Monterey, CA,
181–194.

WRIGHT, C. P., MARTINO, M., AND ZADOK, E. 2003. NCryptfs: A Secure and Convenient Cryp-
tographic File System. In Proceedings of the Annual USENIX Technical Conference. San Antonio,
TX, 197–210.

ZADOK, E. AND NIEH, J. 2000. FiST: A Language for Stackable File Systems. In Proceedings of
the Annual USENIX Technical Conference. San Diego, CA, 55–70.

Received June 2005; accepted June 2005

ACM Transactions on Storage ACM, Vol. 1, No. 4, Novemeber 2005.


