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Abstract
Administrators often prefer to keep related sets of files

in different locations or media, as it is easier to maintain
those files separately. Users, on the other hand, prefer to
see all files in one location for convenience. One solution
that accommodates both needs is virtual unification—that
is providing a merged view of several directories, with-
out physically merging them. For example, unification
can merge the contents of several CD-ROM images with-
out unpacking them, merge binary directories from dif-
ferent packages, merge views from several file servers,
and more. Unification can also be used for snapshotting,
by marking some data sources read-only and then utiliz-
ing copy-on-write for the read-only sources. It is difficult
to virtually unify of a set of files while maintaining Unix
semantics. Past efforts to provide such unification of-
ten compromised on the set of features provided or Unix
compatibility.

We designed a unification file system called Unionfs
which uses a promising fan-out stacking technique rarely
used before. Unionfs maintains Unix semantics while of-
fering advanced unification features such as dynamic in-
sertion and removal of namespaces at any point in the
unified view, support for any mix of read-only and read-
write components, efficient in-kernel duplicate elimina-
tion, and more. Our flexible Unionfs implementation
supports traditional unification, snapshotting, and sand-
boxing. We implemented a prototype of Unionfs on
Linux. Our evaluation shows a 2–3% performance over-
head for typical user-like workloads.

1 Introduction
For ease of management, different but related sets of files
are often located in multiple places. Users, however, find
it inconvenient to access such split files: users prefer to
see everything in one place. One proposed solution is to
virtually merge—or unify—the views of different direc-
tories (recursively) such that they appear to be one tree;
this is done without physically merging the disparate di-
rectories. Such unification has the benefit of allowing the
files to remain physically separate, but appear as if they
reside in one location. The collection of merged direc-
tories is called a union, and each physical directory is
called a branch. When creating the union, each branch is
assigned a precedence and access permissions (i.e., read-
only or read-write). At any point in time new branches

may be inserted, or existing branches may be removed
from the union. There are many possible uses for unifi-
cation, which we explore next.

Modern computing systems contain numerous files
that are part of many software distributions. There are of-
ten several reasons to spread those files among different
locations. For example, a wide variety of packages may
be installed in various trees under /opt. Rather than re-
quiring users to include large numbers of directories in
their PATH environment variable, the administrator can
simply unify the various components in /opt,

Another example of unification is merging the con-
tents of several file servers. In a large organization, a
user may have files on a variety of servers (e.g., their per-
sonal files on one, and each project could have its own
server). However, on workstations it should appear as if
all the user’s files are in a common location—regardless
of which server the files are really on. A standard mount
can not be used because mounting two file systems in the
same place would hide the files that were mounted first.
Automounters use symbolic links to create this illusion
[15], but symbolic links still expose the physical direc-
tory structure to users and utilities. Furthermore, many
applications (e.g., shells) interpret symbolic links. Auto-
mounters also precompute the entire union without keep-
ing it up-to-date. A unification file system can simply
unify the various mount points into a common directory.
File servers may come online or go offline at any time.
Therefore, it is necessary that a unification file system
can dynamically add and remove branches.

Large software collections are often distributed as split
CD-ROM images because of the media’s size limitations.
However, users often want to download a single pack-
age from the distribution. To meet both needs, mirror
sites usually have both the ISO images and the individ-
ual packages. This wastes the disk space and bandwidth
because the same data is stored on disk and downloaded
twice. On our group’s FTP server, we only keep physical
copies of the Fedora ISO images; we loopback-mount the
ISO images, and then we unify their contents to provide
direct access to the RPMs and SRPMs.

Snapshotting is a useful tool for system administrators,
who need to know what changes are made to the sys-
tem while installing new software [9, 13]. If the instal-
lation failed, the software does not work as advertised,
or is not needed, then the administrator often wants to
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revert to a previous good system state. Unification can
provide a file system snapshot that carries out the instal-
lation of new software in a separate directory. Snapshot-
ting is accomplished by adding an empty high-priority
branch, and then marking the existing data read-only.
If any changes are made to the read-only data, Unionfs
transparently makes the changes on the new high-priority
branch. The system administrators can then examine the
exact changes made to the system and then easily keep or
remove them.

Along similar lines, when an Intrusion Detection Sys-
tem (IDS) detects a possible intrusion, it should prevent
further changes to the file system, while legitimate users
should be able to perform their tasks. Furthermore, false
alarms can be very common, so the system should take
some steps to protect itself (by carefully tracking the
changes made by that process), but not outright kill the
suspicious process. If an intrusion is suspected, then the
IDS can create snapshots that the system administrator
can examine afterward. In addition to file system snap-
shots, Unionfs also supports sandboxing. Sandboxes es-
sentially create a namespace fork at the time a snapshot is
taken. Processes are divided into two (or more) classes:
bad processes, which the IDS suspects are intrusions; and
all other processes are good. The good processes write to
one snapshot, and the bad processes write to another. The
good processes only see the existing data, and changes
made by other good processes. Likewise, the bad pro-
cesses only see the existing data and changes made by
bad procceses.

Although the concept of virtual namespace unification
appears simple, it is difficult to design and implement it in
a manner that fully complies with expected Unix seman-
tics. The various problems include handling files with
same names in the merged directory, maintaining consis-
tency while deleting files that may exist in multiple direc-
tories, handling a mix of read-only and read-write direc-
tories, and more. Given the aforementioned difficulties
in maintaining Unix semantics in union file systems, it
is not surprising that none of the past implementations
solved all problems satisfactorily.

We have designed and built Unionfs, a unification file
system that addresses all of the known complexities of
maintaining Unix semantics without compromising ver-
satility and features offered. We support two file deletion
modes that address even partial failures. We allow an
efficient and cache-coherent insertion or deletion of any
arbitrary read-only or read-write directory into the union.
Unionfs also includes efficient in-kernel handling of files
with the same name; a careful design that minimizes data
movement across branches; several modes for permission
inheritance; and support for snapshots and sandboxing.
We compare Unionfs’s features with past alternatives and
show that Unionfs provides new features and also use-

ful features from past work. Our performance evalua-
tion shows a small overhead of 2–3% under normal user
workloads and acceptable overheads even under demand-
ing workloads.

The rest of this paper is organized as follows. Section
2 describes our design and Section 3 elaborates on the
design of each Unionfs operation. Section 4 surveys re-
lated work. Section 5 compares the features of Unionfs
with those offered by previous systems. Section 6 ana-
lyzes Unionfs’s performance. We conclude in Section 7
and suggest future directions.

2 Design
Although the concept of virtual namespace unification
appears simple, it is difficult to design and implement it in
a manner that fully complies with expected Unix seman-
tics. There are four key problems when implementing a
unification file system.

The first problem is that two (or more) unified direc-
tories can contain files with the same name. If such di-
rectories are unified, then duplicate names must not be
returned to user-space or it could break many programs.
The solution is to record all names seen in a directory
and skip over duplicate names. However, that solution
can consume memory and CPU resources for what is nor-
mally a simpler and stateless directory-reading operation.
Just because two files may have the same name, does
not mean they have the same data or attributes. Unix
files have only one data stream, one set of permissions,
and one owner; but in a unified view, two files with
the same name could have different data, permissions,
or even owners. Even with duplicate name elimination,
the question still remains which attributes should be used.
The solution to this problem often involves defining a pri-
ority ordering of the individual directories being unified.
When several files have the same name, files from the
directory with a higher priority take precedence.

The second problem relates to file deletion. Since files
with the same name could appear in the directories be-
ing merged, it is not enough to delete only one instance
of the file because that could expose the other files with
the same name, resulting in confusion as a successfully
deleted file appears to still exist. Two solutions to this
problem are often proposed. (1) Try to delete all in-
stances. However, this multi-deletion operation is dif-
ficult to achieve atomically. Moreover, some instances
may not be deletable because they could reside in read-
only directories. (2) Rather than deleting the files, insert a
whiteout, a special high-priority entry that marks the file
as deleted. File system code that sees a whiteout entry
for file F behaves as if F does not exist.

The third problem involves mixing read-only and read-
write directories in the union. When users want to modify
a file that resides in a read-only directory, the file must be
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copied to a higher-priority directory and modified there,
an act called a copyup. Copyups only solve part of the
problem of mixing read-write and read-only directories
in the union, because they address data and not meta-
data. Past unification file systems enforced a simpler
model: all directories except the highest-priority one are
read-only. Forcing all but the highest-priority branch to
be read-only tends to clutter the highest-priority directory
with copied-up entries for all of the remaining directo-
ries. Over time, the highest-priority directory becomes a
de-facto merged copy of the remaining directories’ con-
tents, defeating the physical separation goal of unifica-
tion.

The fourth problem involves name cache coherency.
For a union file system to be useful, it should allow ad-
ditions to and deletions from the set of unified directo-
ries. Such dynamic insertions and deletions in an active
in-use namespace can result in incoherency of the direc-
tory name-lookup cache. One solution to this problem is
to simply restrict insertions into the namespace to a new
highest-priority directory.

We designed Unionfs to address these problems while
supporting n underlying branches or directories with the
following three goals:

• No artificial constraints on branches To allow
Unionfs to be used in as many applications as pos-
sible, we do not impose any unnecessary constraints
on the order or attributes of branches. We allow a
mix of multiple read-write and read-only branches.
Any branch can be on any file system type. We sup-
port dynamic insertion and removal of branches in
any order. The only restriction we kept was that in
a read-write union, the highest-priority branch must
be read-write. This restriction is required because
a highest-priority read-only branch can not be over-
ridden by another branch.

• Maintain Unix Semantics One of our primary
goals was to maintain Unix semantics. A Unionfs
operation can include operations across several
branches, which should succeed or fail as a unit.
Returning partial errors can confuse applications
and also leave the system in an inconsistent state.
Through a careful ordering of operations, a Unionfs
operation succeeds or fails as a unit.

• Scalability We wanted Unionfs to have a mini-
mal overhead even though it consists of multiple
branches across different file systems. Therefore,
we only look up a file in the highest priority branch
unless we need to modify the file in other branches;
once found, we use the OS caches to save the lookup
results. We delay the creation of directories that are
required for copyup. We attempt to leave files in the
branch in which they already exist and avoid copy-
ing data across branches until required.

Next, we describe the following aspects of Unionfs’s
design in order: Linux VFS objects, stacking VFS op-
erations, error propagation, copyup and parent directory
creation, and whiteouts. We provide operational details
of Unionfs in Section 3.

VFS Objects We discuss Unionfs using Linux termi-
nology. Unionfs defines operations for four VFS objects:
the superblock, the inode, the file, and the directory en-
try. The superblock stores information about the entire
file system, such as used space, free space, and the loca-
tion of other objects (e.g., inode objects). The superblock
operations include unmounting a file system and deleting
an inode. The inode object is a physical instance of a file
that stores the file data and attributes such as owner, per-
missions, and size. Operations that manipulate the file
system namespace, like create, unlink, and rename, are
inode operations. The file object represents an open in-
stance of a file. Each user-space file descriptor maps to a
file object. The file operations primarily deal with open-
ing, reading, and writing a file. The directory entry, also
called a dentry, represents a cached name for an inode in
memory. On lookup, a dentry object is created for every
component in the path. If hardlinks exist for a file, then
an inode may have multiple names, and hence multiple
dentries. The kernel maintains a dentry cache (dcache)
which in turn controls the inode cache. The dentry op-
erations include revalidating dentries, comparing names,
and hashing names.

Stacking VFS Operations Stackable file systems are a
technique to layer new functionality on existing file sys-
tems [19]. A stackable file system is called by the VFS
like other file systems, but in turn calls another file system
instead of performing operations on a backing store such
as a disk or an NFS server. Before calling the lower-level
file system, stackable file systems can modify the oper-
ation, for example encrypting data before it is written to
disk.
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Figure 1: Unionfs: A Fan-out file system can access N differ-
ent branches directly.

Unionfs is a stackable file system that operates on mul-
tiple underlying file systems. It has an n-way fan-out ar-
chitecture as shown in Figure 1 [7, 17]. The benefit of
this approach is that Unionfs has direct access to all un-
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derlying directories or branches, in any order. A fan-out
structure improves performance and also makes our code
base more applicable to other fan-out file systems like
replication, load balancing, etc.

Unionfs merges the contents of several underlying di-
rectories. In Unionfs, each branch is assigned a unique
precedence so that the view of the union presented to the
user is always unambiguous. An object to the left has a
higher precedence than an object to the right. The left-
most object has the highest precedence.

For regular files, devices, and symlinks, Unionfs per-
forms operations only on the leftmost object. This is
because applications expect only a single stream of data
when accessing a file. For directories, Unionfs combines
the files from each directory and performs operations on
each directory. Operations are ordered from left to right,
which preserves the branch precedence. A delete opera-
tion in Unionfs may be performed on multiple branches.
Unionfs starts delete operations in reverse order, from
right to left, so that if any operation fails, then Unionfs
does not modify the leftmost entry until all lower priority
operations have succeeded. In this way Unix semantics
are preserved even if the operation fails in some branches,
because the user-level view remains unchanged. For all
operations in Unionfs, we utilize VFS locking to ensure
atomicity.

Error Propagation Unionfs may operate on one or
more branches, so the success or the failure of any opera-
tion depends on the successes and the failures in multiple
branches. If part of an operation fails, then Unionfs gives
the operation another chance to succeed. For example,
if a user attempts to create a file and gets an error (e.g.,
a read-only file system error), then Unionfs attempts to
create the file to the left.

Copyup and Parent Directory Creation Unionfs at-
tempts to leave a file on the branch where it initially ex-
isted. However, Unionfs transparently supports a mix of
read-only and read-write branches. Instead of returning
an error from a write operation on a read-only branch,
Unionfs moves the failed operation to the left by copying
the file to a higher priority branch, a copyup.

To copy up a file, Unionfs may create an entire direc-
tory structure (e.g., to create the file a/b/c/d, it creates
a, b, and c first). Unlike BSD Union Mounts, which
clutter the highest-priority branch by creating the direc-
tory structure on every lookup [14], Unionfs creates di-
rectories only when they are required.

An important factor for security is the permissions of
the copied-up files and the intermediate directories cre-
ated. Unionfs provides three modes for choosing permis-
sions: COPYUP OWNER sets the mode and the owner to
that of the original file; COPYUP CONST sets the mode
and the owner to ones specified at mount time; and

COPYUP CURRENT sets the mode and the owner based
on the current umask and owner of the process that ini-
tiated the copyup. These policies fulfill the requirements
of different sites. COPYUP OWNER provides the secu-
rity of the original file and preserves Unix semantics, but
charges the owner’s quota. COPYUP CONST allows ad-
ministrators to control the new owner and mode of copied
up files. COPYUP CURRENT is useful when the current
user should have full permissions on the copied up files,
and affects the current user’s quota.

Whiteouts Whiteouts are used to hide files or directo-
ries in lower priority branches. Unionfs creates whiteouts
as zero length files, named .wh.F where F is the name
of the file or directory to be hidden. This uses an inode,
but no data blocks. The whiteouts are created in the cur-
rent branch or in a higher priority branch of the current
branch. One or more whiteouts of a file can exist in a
lower priority branch, but a file and its whiteout can not
exist in the same branch. Depending on a mount-time
flag, Unionfs creates whiteouts in unlink-like operations
as discussed in Sections 3.3 and 3.4. Whiteouts for files
are created atomically by renaming F to .wh.F . For
other types of objects, .wh.F is created, and then the
original object is removed.

3 Design Details
In this section, we describe individual Unionfs opera-
tions. We describe lookup and open in Section 3.1, cre-
ating new objects in Section 3.2, deleting objects in Sec-
tion 3.3, rename in Section 3.4, dynamic branch insertion
and deletion in Section 3.5, sandboxing using split-view
caches in Section 3.6, and readdir in Section 3.7.

3.1 Lookup and Open
Lookup is one of the most important inode operations. It
takes a directory inode and a dentry within that directory
as arguments, and finds the inode for that dentry. If the
name is not found, it returns a negative dentry—a den-
try that does not have any associated inode. Only the
leftmost file is used for read-only meta-data operations
or operations that only modify data. Unionfs proceeds
from left to right in the branches where the parent direc-
tory exists. If the leftmost entry that is found is a file,
then Unionfs terminates the search, preventing unneces-
sary lookups in branches to the right. We call this early
termination a lazy lookup. In operations that operate on
all underlying files, such as unlink, Unionfs calls lookup
on each branch to the right of the leftmost file to popu-
lates the branches that were skipped.

Unionfs provides a unified and a merged view of di-
rectories in all the branches. Therefore if the leftmost
entry is a directory, Unionfs looks up the directory in all
the branches. If there is no instance of the file or the di-
rectory that Unionfs is looking up, it returns a negative

4



dentry that points to the leftmost parent dentry.
In each branch, Unionfs also looks up the whiteout en-

try with the name of the object it is looking for. If it
finds a whiteout, it stops the lookup operation. If Unionfs
found only negative dentries before the whiteout dentry,
then lookup returns a negative dentry for the file or the di-
rectory. If Unionfs found any dentries with correspond-
ing inodes (i.e., objects that exist), then it returns only
those entries.

When opening a file, Unionfs opens the lower-level
non-negative dentries that are returned by the lookup op-
eration. Unionfs gives precedence to the leftmost file, so
it opens only the leftmost file. However, for directories,
Unionfs opens all directories in underlying branches, in
preparation for readdir as described in Section 3.7. If the
file is in a read-only branch and is being opened for writ-
ing, then Unionfs copies up the file and opens the newly
copied-up file.

3.2 Creating New Objects
A file system creates objects with create, mkdir, symlink,
mknod, and link. Although these operations instantiate
different object types, their behavior is fundamentally
similar.

Unionfs creates a new object using the negative den-
try returned by the lookup operation. However, a nega-
tive dentry may exist because a whiteout is hiding lower-
priority files. If there is no whiteout, then Unionfs instan-
tiates the new object. A file and its whiteout cannot exist
in the same branch. If Unionfs is creating a file and finds
a whiteout, it renames the whiteout to the new file. The
rename of the whiteout to the file ensures the atomicity
of the operation and avoids any partial failures that could
occur during unlink and create operations.

For mkdir, mknod, and symlink, Unionfs instantiates
the new object and then removes the whiteout. To en-
sure atomicity, the inode of the directory is locked during
this procedure. However, if mkdir succeeds, the newly-
created directory merges with any directories to the right,
which were hidden by the removed whiteout. This would
break Unix semantics as a newly created directory is not
empty. When a new directory is created after removing a
whiteout, Unionfs creates whiteouts in the newly-created
directory for all the files and subdirectories to the right.
To ensure that the on-disk state is consistent in case of
a power or hardware failure, before mounting Unionfs, a
high-level fsck can be run. Any objects that exist along
with their whiteout are detected, and can optionally be
corrected—just like when a standard fsck detects in-
consistencies.

3.3 Deleting Objects
Unionfs supports two deletion modes: DELETE ALL

and DELETE WHITEOUT. We describe each mode with

pseudo-code. We use the following notations:
LX Index of the leftmost branch where X exists
RX Index of the rightmost branch where X exists
X̄ Whiteout entry for X
X [i] X’s lower-level object in branch i

To create a whiteout, we use the function described by
the following pseudo-code:
1 create whiteout(X, i)
2 while (i ≥ 1) {
3 if create X̄ succeeds then return
4 i--
5 }

As shown in lines 2–4, Unionfs attempts to create a
whiteout starting in branch i. If the creation of X̄ fails on
i, then Unionfs attempts to create X̄ to the left of branch
i on branch i − 1. If the operation fails, then Unionfs
continues to attempt the creation of the whiteout, until it
succeeds in a branch to the left of branch i.

The following pseudo-code describes unlink:
1 unionfs_unlink(X)
2 if mode is DELETE_ALL {
3 for i = RX downto LX

4 if X[i] exists then unlink(X[i])
5 }
6 if an error occurred

or mode is DELETE_WHITEOUT
7 create whiteout(X, LX)

In the unlink operation for DELETE WHITEOUT

mode, Unionfs creates a whiteout X̄ using the
create whiteout operation.

For the unlink operation in DELETE ALL, Unionfs
scans from right to left, attempting to unlink the file in
each branch as shown in the lines 2–5. This behavior is
the most direct translation of a delete operation from a
single branch file system. The delete operation moves
in reverse precedence order, from right to left. This en-
sures that if any delete operation fails, the user-visible
file system does not change. If any error occurred dur-
ing the deletions, a whiteout is created by calling the
create whiteout procedure.

Whiteouts are essential when Unionfs fails to unlink a
file. Failure to delete even one of the files or directories in
the DELETE ALL mode results in exposing the file name
even after a deletion operation. This would contradict
Unix semantics, so a whiteout needs to be created in a
branch with a higher priority to mask the files that were
not successfully deleted.

Deleting directories in Unionfs is similar to unlink-
ing files. Unionfs first checks to see if the directory
is empty. If any file exists without a corresponding
whiteout, Unionfs returns a “directory not empty” error
(ENOTEMPTY). A helper function, called isempty, re-
turns true if a directory, D, is empty (i.e., a user would
not see any entries except . and ..).

In the DELETE WHITEOUT mode, Unionfs first checks
if the directory is empty. If the directory is empty, then
Unionfs creates a whiteout in the leftmost branch where
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the source exists to hide the directory. Next Unionfs re-
moves all whiteouts within the leftmost directory and the
leftmost directory itself. If the operation fails midway,
our fsck can detect and repair an error.

The deletion operation for directories in DELETE ALL

mode is similar to the unlink operation in this mode.
Unionfs first verifies if the directory is empty. A white-
out entry is created to hide the directory and as a flag for
fsck in case the machine crashes. Next, Unionfs scans
the branches from right to left and attempts to delete the
lower-level directory and any whiteouts within it. If all
deletions succeed, then the whiteout is removed.

3.4 Rename
Rename is one of the most complex operations in any
file system. It becomes even more complex in Unionfs,
which involves renaming multiple source files to mul-
tiple destination files—while still maintaining Unix se-
mantics. Even though a rename in Unionfs may involve
multiple operations like rename, unlink, create, copyup,
and whiteout creation, it is important to provide atomicity
and consistency on the whole.

For rename, the source S can exist in one or more
branches and the destination D can exist in zero or more
branches. To maintain Unix semantics, rename(S, D)
must have the following two key properties. (1) If re-
name succeeds, then S is renamed to D and S does not
exist. (2) If rename fails, then S remains unchanged; and
if D existed before, then D remains unchanged.

In general, rename is a combination of a link of the
source file to the destination file and an unlink of the
source file. So rename has two different modes based on
the unlink flag: DELETE WHITEOUT and DELETE ALL

(the latter is the default mode).
In the DELETE WHITEOUT mode, Unionfs only re-

names the leftmost occurrence of the source and then
hides any occurrences to the right with a whiteout. Using
the notation of Section 3.3, the procedure is as follows:

1 unionfs_rename(S,D) { /* DELETE_WHITEOUT */
2 create whiteout for S
3 rename(S[LS], D[LS])
4 for i = LS − 1 downto LD

5 unlink(D[i])
6 }

In line 2, Unionfs creates a whiteout for the source.
This makes it appear as if the source does not exist. In
line 3, Unionfs then renames the leftmost source file in
its own branch. Next, Unionfs traverses from right to left,
starting in the branch that contains the leftmost source
and ending in the leftmost branch where the destination
exists. If the destination file exists in a branch, then it is
removed.

To maintain the two aforementioned key properties of
rename, we make the assumption that any rename oper-
ation performed can be undone, though the overwritten

file is lost. If any error occurs, we revert the files that we
have renamed. This means that the view that the user sees
does not change, because the leftmost source and destina-
tion are preserved. During the Unionfs rename operation,
the source and destination directories are locked, so the
user can not view an inconsistent state. However, if an
unclean shutdown occurs, the file system may be in an
inconsistent state. Our solution (not yet implemented) is
to create a temporary state file before the rename oper-
ation and then remove it afterward. Our high-level fsck
can then detect and repair any errors.

Rename in DELETE ALL mode first renames each
source file to the destination in its own branch, from right
to left. The branch that contains the leftmost destination
(LD) is skipped in this first pass, because if a subsequent
operation were to fail we could not undo the rename in
LD. The second phase is to remove the destination file in
branches to the left of the leftmost source file (LS). This
prevents higher-priority destination entries from hiding
the new data. Finally, the branch that contains the left-
most destination file is handled (LD). If the leftmost des-
tination is to the left of the leftmost source (LD < LS),
then the file is removed to prevent it from hiding the new
data. If this operation succeeds, then the operation as a
whole succeeds, otherwise the operation fails. If the left-
most destination is not to the left of the leftmost source
(LD >= LS), then the source is renamed to the destina-
tion in that branch. Again, if this operation succeeds, the
operation as a whole succeeds, otherwise the operation
fails. If the operation fails, we revert the renamed files to
their original name.

Unionfs handles read-only file system errors differ-
ently than other errors. If a read-write operation is at-
tempted in a read-only branch, then Unionfs copies up
the source file and attempts to rename it to the destina-
tion. To conserve space and provide the essence of our
algorithms without unnecessary complication, we elided
these checks from the previous examples.

3.5 Dynamic Branch Insertion/Deletion

Unionfs supports dynamic insertion and deletion of
branches in any order or in any position. Unionfs’s in-
odes, dentries, superblock, and open files all have gen-
eration numbers. Whenever a new branch is added or
removed, the superblock’s generation number is incre-
mented. To check the freshness of objects, the VFS calls
revalidate and d revalidate on inodes and dentries, re-
spectively. If an object’s generation number does not
match the super-block, then the data structures are re-
freshed from the lower-level file systems and the genera-
tion number is updated. Refreshing a dentry or inode is
similar to the lookup procedure, but instead of creating
new objects, it modifies existing objects. Refreshing an
open file is similar to the open procedure, but preserves
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the existing upper-level file structure.
In most cases, Unionfs does not permit the removal of

an in-use branch (opening a file increments the branch’s
reference count, and closing the file decrements the
count). However, when a process changes its working
directory, the VFS does not inform the file system. If a
branch is removed, but a process is still using it as its
working directory, then a new inode is created with an
operations vector filled with functions that return a “stale
file handle” error. This is similar to NFS semantics.

The VFS provides methods for ensuring that both
cached dentry and inode objects are valid before it uses
them. However, file objects have no such revalidation
method. This shortcoming is especially acute for stack-
able file systems because the upper-level file object is
very much like a cache of the lower-level file object or
objects. In Unionfs this becomes important when a snap-
shot is taken. If the file is not revalidated, then writes can
continue to affect read-only branches. With file revali-
dation, Unionfs detects that its branch configuration has
changed and updates the file object.

Our current prototype of file-level revalidation is im-
plemented at the entry point of each Unionfs file method
to allow Unionfs to operate with an unmodified kernel.
However, some simple system calls such as fstat read the
file structure without first validating its contents. Ideally,
the VFS should handle this functionality so that the ser-
vice is exposed to all file systems.

3.6 Split-View Caches
Normally, the OS maintains a single view of the names-
pace for all users. This limits new file system functional-
ity that can be made available. For example, in file cloak-
ing users only see the files that they have permission to
access [18]. This improves privacy and prevents users
from learning information about files they are not entitled
to access. To implement this functionality in a UID/GID
range-mapping NFS server, caches had to be bypassed.
Unionfs can divert any process to an alternative view
of the file system. This functionality can be integrated
with an IDS to create a sandboxing file system. Using
a Tracefs-like filter [1] provided by an IDS, Unionfs can
direct good processes to one view of the union, and bad
processes to another view.

In Linux, each mount point has an associated vfsmount
structure. This structure points to the superblock that is
mounted and its root dentry. It is possible for multiple
vfsmounts to point to a single super-block, but each vfs-
mount points to only one superblock and root. When the
VFS is performing a lookup operation and comes across
a mount point, there is an associated vfsmount structure.
The VFS simply dereferences the root dentry pointer, and
follows it into the mounted file system.

To implement split-view caches we modified the

generic super operations operations vector to include a
new method, select super. Now, when the VFS comes
across a mount point, it invokes select super (if it is de-
fined), which returns the appropriate root entry to use for
this operation. This simple yet powerful new interface
was accomplished with minimal VFS changes: only eight
new lines of core kernel code were added.

Internally, Unionfs has to support multiple root den-
tries at once. To do this we create a parallel Unionfs
view that is almost a completely independent file sys-
tem. The new view has its own super-block, dentries,
and inodes. This creates a parallel cache for each of
the views. However, Unionfs uses the lower-level file
systems’ data cache, so the actual data pages are not
duplicated. This improves performance and eliminates
data cache coherency problems. The two views are con-
nected through the super-blocks so that when the original
Unionfs view is unmounted, so are the new views.

Our current prototype uses a hard-coded selection al-
gorithm, though we plan to create an interface for mod-
ules to register their own selection algorithms.

3.7 Readdir
Readdir returns directory entries in an open directory.
A directory in Unionfs can contain multiple directo-
ries from different branches, and therefore a readdir in
Unionfs is composed of multiple readdir operations.

Priority is given to the leftmost file or directory. There-
fore, Unionfs’s readdir starts from the leftmost branch.
Unionfs eliminates duplicate instances of files or directo-
ries with the same name. Any whiteout entry to the left
hides the file or the directory to the right. To eliminate
duplicates, Unionfs records the names of files, directo-
ries, and whiteouts that have already been returned in a
hash table. Unionfs does not return names that have al-
ready been recorded.

4 Related Work
We begin by describing the origins of fan-out file sys-
tems. Next, we briefly describe several other representa-
tive unification systems. We then describe snapshotting
and sandboxing systems.

Fan-out File Systems Rosenthal defined the concept of
a fan-out file system, and suggested possible applications
such as caching or fail-over [17]. However, Rosenthal
only suggested these file systems as possible uses of a
versatile fan-out vnode interface, but did not build any
fan-out file systems. Additionally, Rosenthal’s stacking
infrastructure required an overhaul of the VFS. The Fi-
cus Replicated File System is a multi-layer stackable fan-
out file system that supports replication [6, 7]. Ficus has
two layers, a physical layer that manages a single replica
and a logical layer that manages several Ficus physical
layer replicas. Ficus uses the existing vnode interface,
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but overloads certain operations (e.g., looking up a spe-
cial name is used to signal a file open). Ficus is developed
as a stackable layer, but it does not make full use of the
naming routines providing by existing file systems. Ficus
stores its own directory information within normal files,
which adds complexity to Ficus itself.

In Unionfs, we have implemented an n-way fan-out
file system for merging the contents of directories using
existing VFS interfaces.

Plan 9 Plan 9, developed by Bell Labs, is a general-
purpose distributed computing environment that can con-
nect different machines, file servers, and networks [2].
Resources in the network are treated as files, each of
which belongs to a particular namespace. A namespace
is a mapping associated with every directory or file name.
Plan 9 offers a binding service that enables multiple di-
rectories to be grouped under a common namespace. This
is called a union directory. A directory can either be
added at the top or the bottom of the union directory, or it
can replace all the existing members in the structure. In
case of duplicate file instances, the occurrence closest to
the top is chosen for modification from the list of member
directories.

3-D File System (3DFS) 3DFS was developed by
AT&T Bell Labs, primarily for source code management
[12]. It maintains a per-process table that contains direc-
tories and a location in the file system that the directo-
ries overlay. This technique is called viewpathing, and it
presents a view of directories stacked over one another.
In addition to current directory and parent directory nav-
igation, 3DFS introduces a special file name “...” that
denotes a third dimension of the file system and allows
navigation across the directory stack. 3DFS is imple-
mented as user-level libraries, which often results in poor
performance [19]; atomicity guarantees also become dif-
ficult as directory locking is not possible.

TFS The Translucent File System (TFS) was released
in SunOS 4.1 in 1989 [8]. It provides a viewpathing so-
lution like 3DFS. However, TFS is an improvement over
3DFS as it better adheres to Unix semantics when delet-
ing a file. TFS transparently creates a whiteout when
deleting a file. All directories except the topmost are
read-only. During mount time, TFS creates a file called
.tfs_info in each mounted directory, which keeps se-
quence information about the next mounted directory and
a list of whiteouts in that directory. Whenever the user at-
tempts to modify files in the read-only directories, the file
and its parent directories are copied to the topmost direc-
tory. TFS is implemented as a user-level NFS server that
services all directory operations like lookup, create, and
unlink. TFS has a kernel-level component that handles
data operations like read and write on individual files.
TFS was dropped from later releases of SunOS. Today,

the Berkeley Automounter Amd [15] supports a TFS-
like mode that unifies directories using a symbolic-link
shadow tree (symlinks point to the first occurrence of a
duplicate file).

4.4BSD Union Mounts Union Mounts, implemented
on 4.4BSD-Lite [14], merge directories and their trees to
provide a unified view. This structure, called the union
stack, permits directories to be dynamically added either
to the top or the bottom of the view. Every lookup oper-
ation in a lower layer creates a corresponding directory
tree called a shadow directory in the upper layer. This
clutters the upper-layer directory and converts the read-
only lookup into a read-write operation. A request to
modify a file in the lower layers results in copying the
file into its corresponding shadow directory. The copied
file inherits the permissions of the original file, except
that the owner of the file is the user who mounted the file
system. A delete operation creates a whiteout to mask all
the occurrences of the file in the lower layers. To avoid
consumption of inodes, Union Mounts make a special di-
rectory entry for a whiteout without allocating an inode.
Whiteouts are not allocated inodes in order to save re-
sources, but (ironically) shadow directories are created
on every lookup operation, consuming inodes unneces-
sarily.

Snapshotting There are several commercially and
freely available snapshotting systems, such as FFS with
SoftUpdates and WAFL [9, 13]. These systems perform
copy-on-write when blocks change. Most of these sys-
tems require modifications to existing file systems and
the block layer. Clotho is a departure from most snap-
shotting systems in that it requires only block layer mod-
ifications [4]. Snapshotting with Unionfs is more flexible
and portable than previous systems because it can stack
on any existing file system (e.g., Ext2 or NFS). Because
Unionfs is stackable, snapshots can also be created per
file or file type.

Sandboxing Sandboxing is a collection of techniques
to isolate one process from the others on a machine. The
chroot system call restricts the namespace operations of
some processes to a subset of the namespace. Jails extend
chroot to allow partitioning of networking and process
control subsystems [10]. Another form of sandboxing is
to monitor system calls, and if they deviate from a policy,
prevent them from being executed [5].

5 Feature Comparison
In this section we present a comparison of our Unionfs
with the four most representative comparable systems:
Plan 9 union directories, 3DFS, TFS, and BSD Union
Mounts. We identified the following fifteen features and
metrics of these systems, and we summarized them in
Table 1:
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Feature Plan 9 3DFS TFS 4.4BSD Unionfs
1 Unix semantics: Recursive unification ✔ ✔ ✔ ✔

2 Unix semantics: Duplicate elimination level User Library User NFS Server C Library Kernel
3 Unix semantics: Deleting objects ✔ ✔ ✔

4 Unix semantics: Permission preservation on
copyup

✔a

5 Multiple writable branches ✔ ✔

6 Dynamic insertion & removal of any branch ✔

7 Dynamic insertion & removal of the top branch ✔ ✔ ✔ ✔

8 No file system type restrictions ✔ ✔ ✔ b ✔

9 Creating shadow directories ✔c ✔ ✔ ✔c

10 Copyup-on-write ✔ ✔ ✔ ✔d

11 Whiteout support ✔e ✔ ✔ ✔

12 Snapshot support ✔

13 Sandbox support ✔

14 Implementation technique VFS User User NFS Server Kernel FS Kernel FS
(stack) Library + Kernel helper (stack) (fan-out)

15 Operating systems supported Plan 9 Manyf SunOS 4.1 4.4BSD Linuxg

16 Total LoC 6,247h 16,078 16,613 3,997 9,784
17 Customized functionality ✔

Table 1: Feature Comparison. A check mark indicates that the feature is supported, otherwise it is not.
a Through a mount time flag, a copied-up file’s mode can be that of the original owner, current user, or the file system mounter.
b BSD Union Mounts allow only an FFS derivative to be the topmost layer.
c Lazy creation of shadow directories.
d Unionfs performs copyup only in case of a read-only branch.
e 3DFS uses whiteouts only if explicitly specified.
f 3DFS supports many architectures: BSD, HP, IBM, Linux, SGI, Solaris, Cygwin, etc.
g Unionfs runs on Linux, but it is based on stackable templates, which are available on three systems: Linux, BSD, and Solaris.
h Since Plan 9’s union directories are integrated into the VFS, the LoC metric is based on an estimate of all related code in the VFS.

1. Unix semantics: Recursive unification: 3DFS,
TFS, BSD Union Mounts, and Unionfs present a
merged view of directories at every level. Plan 9
merges only the top level directories and not their
subdirectories.

2. Unix semantics: Duplicate elimination level:
3DFS, TFS, and BSD Union Mounts eliminate du-
plicate names at the user level, whereas Unionfs
eliminates duplicates at the kernel level. Plan 9
union directories do not eliminate duplicate names.

3. Unix semantics: Deleting objects: TFS, BSD
Union Mounts, and Unionfs adhere to Unix seman-
tics by ensuring that a successful deletion does not
expose objects in lower layers. However, Plan 9 and
3DFS delete the object only in the highest-priority
layer, possibly exposing duplicate objects.

4. Unix semantics: Permission preservation on
copyup: All file systems except Unionfs do not
fully adhere to Unix semantics. BSD Union Mounts
make the user who mounted the Union the owner of
the copied-up file, whereas in other systems a copied
up file is owned by the current user. Unionfs, by
default, preserves the owner on a copyup. Unionfs
supports other modes that change ownership on a
copyup as described in Section 2.

5. Multiple writable branches: Unionfs allows files
to be directly modified in any branch. Unionfs at-
tempts to avoid frequent copyups that occur in other
systems and avoids shadow directory creation that
clutters the highest-priority branch. This improves
performance. Plan 9 union directories can have mul-
tiple writable components, but Plan 9 does not per-
form recursive unification, so only the top-level di-
rectory supports this feature. Other systems only al-
low the leftmost branch to be writable.

6. Dynamic insertion and removal of the highest
priority branch: All systems except TFS support
removal of the highest-priority branch. BSD Union
Mounts can only remove branches in the reverse or-
der that they were mounted.

7. Dynamic insertion and removal of any branch:
Only Unionfs can dynamically insert or remove a
branch anywhere in the union.

8. No file system type restrictions: BSD Union
Mounts require the topmost layer to be an FFS
derivative which supports on-disk whiteout direc-
tory entries. Other systems including Unionfs have
no such restriction.

9. Creating shadow directories: 3DFS and TFS cre-
ate shadow directories on write operations in read-

9



only branches. BSD Union Mounts create shadow
directories in the leftmost branch even on lookup, to
prepare for a possible copyup operation; this, how-
ever, clutters the highest-priority branch with unnec-
essary directories, and turns a read-only operation
into a read-write operation. Unionfs creates shadow
directories only on write operations and errors, like
“read-only file system” (EROFS).

10. Copyup-on-write: Plan 9 union directories do not
support copyup. 3DFS, TFS, BSD Union Mounts,
and Unionfs can copy a file from a read-only branch
to a higher-priority writable branch.

11. Whiteout support: Plan 9 does not support white-
outs. 3DFS creates whiteouts only if manually spec-
ified by the user. BSD Union Mounts, TFS, and
Unionfs create whiteouts transparently.

12. Snapshot support: Only Unionfs is suitable for
snapshotting, because it supports file-object revali-
dation, unifies recursively, adheres to Unix deletion
semantics, allows dynamic insertion of branches,
lazily creates shadow directories, and preserves at-
tributes on copy-up.

13. Sandbox support: Only Unionfs supports sandbox-
ing processes.

14. Implementation technique: Plan 9 union directo-
ries are built into the VFS layer. 3DFS is imple-
mented as a user-level library; whereas it requires no
kernel changes, applications must be linked with the
library to work. Such user-level implementations
often suffer from poor performance. TFS is a user-
space localhost NFS server that works with standard
NFS clients. Running in user-space increases porta-
bility, but decreases performance. TFS has a kernel
level component for performance, but that reduces
its portability. BSD Union Mounts is a kernel-level
stackable file system with a linear stack, whereas
Unionfs is a kernel-level stackable file system with
an n-way fan-out. Stackable file systems have bet-
ter performance than user-space file systems and are
easier to develop than disk-based or network-based
file systems [19].

15. Operating systems supported: 3DFS comes with
a customized C library for several systems: BSD,
HPUX, AIX, Linux, IRIX, Solaris, and Cygwin.
Plan 9 is an operating system by itself. TFS was sup-
ported on SunOS 4.1. BSD Union Mounts are im-
plemented on 4.4BSD and current derivatives (e.g.,
FreeBSD). Unionfs runs on Linux, but since it is
based on stacking templates, it can easily be ported
to Solaris and BSD.

16. Total LoC: The number of Lines of Code (LoC) in
the file system is a good measure of maintainabil-
ity, complexity, and the amount of initial effort re-
quired to write the system. Plan 9 union directories

are built into the VFS; therefore its LoC metric is
an approximate estimate based on the most related
code in the VFS. 3DFS has a relatively high LoC
count because it comes with its own set of C library
functions. TFS’s LoC metric accounts for both its
user-level NFS server and kernel component. The
LoC metric for Unionfs and BSD Union Mounts,
both implemented in the kernel, is considerably less
than the user-level implementations. Unionfs has a
larger LoC than BSD Union Mounts because it sup-
ports more features. The Unionfs LoC includes 611
lines of user-space management utilities.

17. Customized functionality: Unionfs has a flexible
design that provides several modes of operation us-
ing mount-time flags. For example, Unionfs al-
lows the users to choose the mode and the permis-
sions of the copied up files, with COPYUP OWNER,
COPYUP CONST, and COPYUP CURRENT as de-
scribed in Section 2. Unionfs also provides two
modes for deleting objects: DELETE ALL and
DELETE WHITEOUT as described in Section 3.3.

6 Performance Evaluation

We evaluate the performance of our system by exe-
cuting various general purpose benchmarks and micro-
benchmarks. Previous unification file systems are either
considerably older or run on different operating systems.
Therefore, we do not compare Unionfs’s performance
with other systems.

We conducted all tests on a Pentium-IV 1.7GHz with
1GB of RAM. The machine ran Red Hat Linux 9 and a
vanilla 2.4.26 kernel. All experiments were located on
a dedicated 200GB Maxtor IDE disk. In order to over-
come the ZCAV effect, the test partition was located on
the outer cylinders of the disk and was just large enough
to accommodate the test data [3]. We chose Ext2 as the
base file system since it is widely used and well-tested.
To ensure a cold cache, we unmounted the underlying
file system once after loading the test data. We also ran
a chill program that we wrote, which allocates and ac-
cesses as much memory as possible, thereby forcing the
kernel to evict data structures and buffers. For all tests,
we computed the 95% confidence intervals for the mean
elapsed, system, and user time using the Student-t distri-
bution. In each case, the half-widths of the intervals were
less than 5% of the mean.

6.1 Configurations

We begin this section by describing the configurations
that we use for the tests. We use the following two oper-
ating modes for our tests:

DALL uses the DELETE ALL mount-time option that
deletes each occurrence of a file or a directory.
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DWHT uses the DELETE WHITEOUT mount time option
that creates whiteouts on a call to rename, unlink, or
rmdir.

We used the following two data distribution methods:

DIST distributes files and directories evenly across
branches with no duplicate files. If two files in the
same directory are distributed to different branches,
then their parent directory is duplicated.

DUP replicates each file and directory to every branch.

We conducted tests for all combinations of the afore-
mentioned parameters for 1, 2, 3, 4, 8, and 16 branches.
We selected these branch numbers in order to study the
performance of the system under different load condi-
tions; one-branch tests were conducted to ensure that
Unionfs did not have a high performance overhead com-
pared with similar tests on Ext2; sixteen-branch tests, on
the other hand, test the scalability of the system under
high workloads; intermediate configurations help exam-
ine Unionfs performance on moderate workloads.

A test run is uniquely described by the mount-time op-
tions, the data distribution, and the number of branches.

6.2 General Purpose Benchmarks
We chose two representative general-purpose workloads:
(1) Postmark, an I/O intensive benchmark [11], and (2)
a CPU-intensive compile benchmark, building the Am-
utils package [15]. To provide comparable results, we se-
lected the number of Ext2 directories based on the num-
ber of underlying Unionfs branches.

Postmark focuses on stressing the file system by per-
forming a series of file system operations such as di-
rectory lookups, creations, and deletions on small files.
A large number of small files is common in electronic
mail and news servers where multiple users are randomly
modifying small files. We configured Postmark to create
20,000 files and perform 200,000 transactions; these are
commonly recommended parameters [11]. We used 200
subdirectories to prevent linear directory lookups from
dominating the results.

The Am-utils build (version 6.1b4) contains over
60,000 lines of code. It performs several hundred small
configuration tests, and then it builds a shared library, ten
binaries, four scripts, and documentation. This bench-
mark contains a fair mix of file system operations, repre-
senting the typical performance impact for users.

Figure 2 shows the elapsed, system, and user time
for Postmark in the DWHT and DALL modes. The re-
sults stayed relatively constant as the number of branches
increased, demonstrating Unionfs’s scalability. The
elapsed time overheads for DALL is in the range of 12.7–
14.3% above that of Ext2. The elapsed time overheads
for DWHT, however, are higher than DALL: varying from
23.5–27.5%. This higher overhead is due to two factors.
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Figure 2: Postmark: 20,000 files and 200,000 transactions.

First, whiteout creation requires two steps—truncating
the file and then renaming it. Second, all directory oper-
ations consume more time, because lookups take longer
as the number of directory entries increases.

The results for all of our Am-utils compile bench-
marks have overheads ranging from 1.5–2.5% for elapsed
time and 6.0–9.1% for system time. Although Postmark
shows that Unionfs may be 2.4 times slower under high
I/O loads, the Am-utils results demonstrate that most
users are unlikely to notice a performance degradation
using Unionfs.

Snapshots We also ran Am-Utils and Postmark while
taking snapshots every 60, 30, and 15 seconds. Am-Utils
had an elapsed time overhead of 19.0–20.1% over Ext2
for all intervals. Four, eight, and sixteen snapshots were
taken for intervals of 60, 30, and 15 seconds, respec-
tively. This demonstrates that Unionfs efficiently per-
forms snapshots for user-like workloads. The Postmark
results are shown in Table 2. Postmark is a more I/O-
intensive workload, and therefore each snapshot causes
more data to be copied to the highest-priority branch. Ad-
ditionally, because each snapshot increases the total num-
ber of files, directory operations such as create, delete,
and lookup take more time. This indicates that periodi-
cally merging snapshots would be beneficial.

Interval(s) Snapshots Overhead
15 35.4 275%
30 9.9 104%
60 4 54%

Table 2: Postmark with snapshots on Unionfs. Elapsed time
overhead is compared to Ext2.

6.3 Micro Benchmarks
Unionfs modifies basic file system operations like
lookup, readdir, unlink, and rmdir. We conducted the fol-
lowing three micro benchmarks on Unionfs to evaluate
the overhead of these operations:

• STAT evaluates the overhead of the lookup operation
by running stat on each file and directory.

• READDIR evaluates the overhead of readdir.
• UNLINK evaluates the overhead of the unlink and

rmdir operations by unlinking each file in the system
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(if unlink returns EISDIR, then we use rmdir).

For all of the micro-benchmarks, we used a pre-
computed list of files and directories. This avoids using
readdir and stat to determine the what to operate on.

For our data set we used 25 copies of Am-utils distri-
bution for a total of 650 directories with 10,750 files that
take 200.9MB of disk space. For the distributed data set,
the number of files remains constant, but there are dupli-
cated directories. For the duplicated set, each branch has
a copy of all files and directories.

STAT Figure 3 shows the benchmark results for STAT.
For a single branch, Unionfs has an overhead of 6.4%
over Ext2. A Unionfs lookup with a DIST distribution
scans all the branches from left to right until it finds the
file. So, there is an expected linear increase in the elapsed
time by a factor of 2.0 for two branches over a single
branch, 2.9 for three branches, 3.6 for four branches, 6.2
for eight branches, and 9.4 for sixteen branches.
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Figure 3: STAT results.

On the other hand, for a DUP data distribution, Unionfs
can stop after the first branch for files, but must access all
of the directories. For a single branch, the overhead is
again 6.4%. The overhead for two branches over a single
branch is 43%, for three branches the overhead increases
to 82%. For sixteen branches, the overhead is a factor of
6.4.

Most of this overhead is I/O. With a cold cache, the
benchmark took from 8.0–80 seconds. With a warm
cache, the benchmark takes 1.2 seconds for Ext2, and
from 1.2–1.8 seconds for Unionfs. We believe that the
warm-cache results are closer to most user workloads,
because most files are accessed multiple times [16].

READDIR Figure 4 shows the benchmark results for
READDIR. For a single branch, Unionfs has an overhead
of 2.0% over Ext2. A Unionfs readdir with a DIST dis-
tribution scans all the branches from left to right listing
the contents of the directories. Because each underly-
ing directory contains fewer files, it examines the same
number of entries as Ext2 (if you ignore duplicated di-
rectories), but the disk head still must seek to read each
of the n small directories. So, again there is an expected
linear increase in the elapsed time by a factor of 2.2 for
two branches over a single branch, 3.3 for three branches,

4.2 for four branches, 6.3 for eight branches, and 10.1 for
sixteen branches. Similary, for a DUP data distribution,
Unionfs must physically read n directories from the disk
for an n branch configuration. Additionally, the directo-
ries will be as large as before and duplicate elimination
must be performed. For a single branch, the overhead is
again 2.0%. The overhead for two branches over a sin-
gle branch is a factor of 2.4, 3.7 for three branches, 5.1
for four branches, 11.7 for eight branches, and 25.5 for
sixteen branches.
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Figure 4: READDIR results.

Most of this overhead is I/O. Indeed, to perform the
test on 16 duplicate copies of the data set on Ext2 took
19.5 times as long as to read a single copy. For a 16-
branch Unionfs configuration with duplicated data, this
translates into an overhead of 31.6% over Ext2 with 16
duplicated data sets. With a cold cache, the benchmark
took from 7.2–184 seconds. With a warm cache, the
benchmark completes in 0.05 seconds for Ext2, and from
0.07–0.2 seconds for Unionfs. We believe that the warm
cache performance is closer to user workloads, because
directories are usually accessed multiple times.

UNLINK Benchmark Figure 5 shows the benchmark
results for our UNLINK microbenchmark. Before running
the benchmark we ran find over the Unionfs file sys-
tem. We did this to warm the cache so that lookup costs
would not interfere with the unlink results. The lookup
operation on files only access the first file, so significant
I/O is still be required for Unionfs.

With a DALL configuration, the mean elapsed time in-
creases from 0.20 seconds for Ext2 to 0.57 seconds for
a single branch Unionfs (a factor of 2.9). This increase
is due to a 3.4 times increase in system time. When ad-
ditional branches are added, the elapsed time increases
for three reasons. First, lookups must be performed in
branches to the right of the file’s first occurrence (which
requires reading those entire directories). Second, before
removing a directory, Unionfs must read the directory in
each branch to ensure that it is logically empty. Third, di-
rectories themselves must be deleted in many branches.
A union with two branches had a 17% elapsed time over-
head when compared to a single branch; three branches
had an overhead of 35%, four branches had an overhead
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of 52%, 8 branches had an overhead of 116%, and 16
branches were slower by a factor of 3.5.

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 0  2  4  6  8  10  12  14  16

T
im

e 
(s

ec
on

ds
, l

og
 s

ca
le

)

Branches

Ext2 (Elapsed)
Ext2 (System)

DIST-DALL (Elapsed)
DIST-DALL (System)

DIST-DWHT (Elapsed)
DIST-DWHT (System)
DUP-DALL (Elapsed)
DUP-DALL (System)

DUP-DWHT (Elapsed)
DUP-DWHT (System)

Figure 5: UNLINK results.

With a DWHT configuration, the mean elapsed time in-
creases from 0.20 seconds to 0.77 seconds (a factor of
3.9); again primarily because of an increase in system
time. The reason that DWHT takes more time than DALL

for this configuration is that it is implemented as a re-
name, which consists of two distinct directory operations
(adding an entry for the new name and removing the old
name). Because DALL only performs one directory op-
eration, it uses less time. For additional branches, the
elapsed time increases at a slower rate than for DALL.
This is because directories do not have to be deleted in all
branches, and lookup does not need to be called in lower-
priority branches. Overheads over a single branch are
3.4% for two and three branches, 14% for four branches,
45% for eight branches, and 107% for sixteen branches.
The overhead increases as the number of branches in-
creases because readdir is called to verify that the direc-
tory is logically empty.

For a DUP distribution with DALL, the elapsed time
again increased to 0.57 seconds for a single branch from
0.20 seconds for Ext2, but the overhead for additional
branches is greater than for the DIST data distribution.
The increase is caused by three factors. First, to deter-
mine if a directory is empty, more entries need to be read.
Second, before removing a file, Unionfs must perform
lookup in all of branches except the leftmost. Third, to
delete a single file, unlink must be performed in each
branch. For two branches, the elapsed time increases
by 45%, and for three branches 85%. For four or more
branches, the I/O time becomes a significant portion of
the overall elapsed time and this is reflected in the over-
heads. For four branches the overhead is a factor of 2.3,
for eight branches the overhead is a factor of 14.7, and
for sixteen branches, the overhead is a factor of 117. The
reason for such a high overhead for sixteen branches is
that Unionfs must actually perform many operations, in-
cluding I/O bound operations. We constructed a similar
benchmark for Ext2, that will remove 4, 8, or 16 copies of
our data set. We warmed the cache so that the cache data
was the same as Unionfs for a corresponding number of
branches. Only the first copy of the data set has a fully

warm cache. All other copies have only the directories
warmed. The overhead of Unionfs compared to this Ext2
test was 47% for four branches, 56% for eight branches,
and only 79% for sixteen branches.

With a DWHT configuration, the mean elapsed time in-
creases from 0.20 seconds to 0.77 seconds (a factor of
3.9). The overhead over a single branch is 12.9% for
two branches, 29.1% for three branches, 42% for four
branches, 207% for eight branches, and 553% for sixteen
branches. The overhead is less than for DALL, because
lookup and directory operations are not required in lower-
priority branches. As the number of branches increases,
overhead increases because more directory reading oper-
ations need to be performed to verify that directories are
logically empty.

The aforementioned benchmarks helped us evaluate
the performance of all features that Unionfs provides.
Our general-benchmarks show that Unionfs has small
user-visible overheads, even for an I/O intensive bench
like Postmark. Our microbenchmarks bring out the worst
case Unionfs operations. We show that Unionfs has ac-
ceptable overheads, and for particularly expensive oper-
ations illustrate that performing the same underlying op-
erations on multiple copies of the data with a plain Ext2
file system is also expensive.

7 Conclusions

We have designed and implemented Unionfs, a unifi-
cation file system that is both versatile and adheres to
Unix semantics. Our performance evaluation shows that
Unionfs has a small overhead for typical user-like work-
loads, and our micro-benchmarks show that Unionfs has
acceptable worst-case performance.

Unionfs is the first implementation of an n-way stack-
able fan-out unification file system. All underlying
branches are directly accessed by Unionfs which allows
it to be more intelligent and efficient. Unionfs sup-
ports a mix of read-only and read-write branches, fea-
tures not previously supported on any unification file sys-
tem. Unionfs also supports the dynamic addition and
deletion of any branch of any precedence, whereas pre-
vious systems only allowed the highest or lowest prece-
dence branch to be added or removed. Unionfs’s flexi-
bility and VFS enhancements allow it to be used for new
applications, such as snaphsotting and sandboxing where
unification systems have not previously been applied.

Even though operations may fail on any one of the
underlying branches, Unionfs maintains Unix seman-
tics. For deletion operations, Unionfs operates from low
precedence to high precedence branches in order to leave
the user-level view unmodified until the operation is guar-
anteed to succeed. We have used careful ordering of op-
erations to atomically return success or failure to the user,
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and leave the file system in a consistent state. To detect
inconsistencies that may arise from unclean shutdowns,
we have created a high-level fsck that examines the
logical structure of a union. Like a standard disk-based
fsck, our file-system checker flags errors and allows the
user to optionally correct them.

Future Work Unionfs is the first fully-functional
stackable fan-out file system made available. We believe
that fan-out stackable file systems have a potential for
usefulness in other areas: replication, striping, fail-over,
caching, and more. Unionfs has taught us much about
the complexity of trying to balance versatility (providing
many useful features) and maintaining Unix semantics.
We are investigating more fan-out file systems with an
eye toward useful general OS infrastructure.

One way to address partial failures is to allow applica-
tions to be aware of such conditions. Most system calls
return either success or one error code from a set of pre-
defined errors. A small number of system calls already
return partial failures that application programmers must
address (e.g., a short read or EAGAIN). We plan to ex-
plore ways of dynamically creating and querying new er-
ror codes that could return more information to applica-
tions. For example, if a write on a replication file system
failed on some branches, the replication file system could
return information about each branch.
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